Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation.

Chemiosmotic energy coupling through oxidative phosphorylation (OXPHOS) is crucial to life, requiring coordinated enzymes whose membrane organization and dynamics are poorly understood. We quantitatively explore localization, stoichiometry, and dynamics of key OXPHOS complexes, functionally fluorescent protein-tagged, in Escherichia coli using low-angle fluorescence and superresolution microscopy, applying single-molecule analysis and novel nanoscale co-localization measurements. Mobile 100-200nm membrane domains containing tens to hundreds of complexes are indicated. Central to our results is that domains of different functional OXPHOS complexes do not co-localize, but ubiquinone diffusion in the membrane is rapid and long-range, consistent with a mobile carrier shuttling electrons between islands of different complexes. Our results categorically demonstrate that electron transport and proton circuitry in this model bacterium are spatially delocalized over the cell membrane, in stark contrast to mitochondrial bioenergetic supercomplexes. Different organisms use radically different strategies for OXPHOS membrane organization, likely depending on the stability of their environment.

[1]  James H. Brown,et al.  Effects of Size and Temperature on Metabolic Rate , 2001, Science.

[2]  P. Bassereau,et al.  Lateral Diffusion on Tubular Membranes: Quantification of Measurements Bias , 2011, PloS one.

[3]  C. Bustamante,et al.  Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM) , 2012, Proceedings of the National Academy of Sciences.

[4]  B. Chance,et al.  A Method for the Localization of Sites for Oxidative Phosphorylation , 1955, Nature.

[5]  Michael W. Davidson,et al.  mMaple: A Photoconvertible Fluorescent Protein for Use in Multiple Imaging Modalities , 2012, PloS one.

[6]  J. Aten,et al.  Measurement of co‐localization of objects in dual‐colour confocal images , 1993, Journal of microscopy.

[7]  D. Sherratt,et al.  Stoichiometry and Architecture of Active DNA Replication Machinery in Escherichia coli , 2010, Science.

[8]  Mark C Leake,et al.  Are Escherichia coli OXPHOS complexes concentrated in specialized zones within the plasma membrane? , 2008, Biochemical Society transactions.

[9]  T. Conrads,et al.  The aerobic respiratory chain of Escherichia coli: from genes to supercomplexes. , 2012, Microbiology.

[10]  A. Mulkidjanian,et al.  Low dielectric permittivity of water at the membrane interface: effect on the energy coupling mechanism in biological membranes. , 2003, Biophysical journal.

[11]  M. L. Genova,et al.  Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. , 2007, American journal of physiology. Cell physiology.

[12]  N. Wilke,et al.  The influence of domain crowding on the lateral diffusion of ceramide-enriched domains in a sphingomyelin monolayer. , 2009, The journal of physical chemistry. B.

[13]  C. Mullineaux,et al.  Protein Diffusion and Macromolecular Crowding in Thylakoid Membranes1[W] , 2008, Plant Physiology.

[14]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[15]  Y. Husimi,et al.  A novel mutant of green fluorescent protein with enhanced sensitivity for microanalysis at 488 nm excitation. , 1999, Biochemical and biophysical research communications.

[16]  Jacob Piehler,et al.  Nanoscale organization of mitochondrial microcompartments revealed by combining tracking and localization microscopy. , 2012, Nano letters.

[17]  G. Unden,et al.  Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. , 1997, Biochimica et biophysica acta.

[18]  M. Leake,et al.  Experimental approaches for addressing fundamental biological questions in living, functioning cells with single molecule precision , 2012, Open Biology.

[19]  Mark Bates,et al.  Super-resolution fluorescence microscopy. , 2009, Annual review of biochemistry.

[20]  P. Lewis,et al.  Dynamic localization of membrane proteins in Bacillus subtilis. , 2004, Microbiology.

[21]  N. Dencher,et al.  Architecture of Active Mammalian Respiratory Chain Supercomplexes* , 2006, Journal of Biological Chemistry.

[22]  William Dowhan,et al.  Cardiolipin Is Essential for Organization of Complexes III and IV into a Supercomplex in Intact Yeast Mitochondria* , 2005, Journal of Biological Chemistry.

[23]  B. Trumpower,et al.  Isolation of ubiquinol oxidase from Paracoccus denitrificans and resolution into cytochrome bc1 and cytochrome c-aa3 complexes. , 1985, The Journal of biological chemistry.

[24]  R. Tjian,et al.  Transcription initiation by human RNA polymerase II visualized at single-molecule resolution. , 2012, Genes & development.

[25]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[26]  Pietro Cicuta,et al.  Diffusion of liquid domains in lipid bilayer membranes. , 2007, The journal of physical chemistry. B.

[27]  E. Boekema,et al.  Respiratory chain supercomplexes in the plant mitochondrial membrane. , 2006, Trends in plant science.

[28]  Ka-Yiu San,et al.  Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. , 2005, Metabolic engineering.

[29]  Michael Boersch,et al.  Diffusion properties of single FoF1-ATP synthases in a living bacterium unraveled by localization microscopy , 2012, Other Conferences.

[30]  Michael W. Davidson,et al.  Fluorescent protein tracking and detection: fluorescent protein structure and color variants. , 2009, Cold Spring Harbor protocols.

[31]  H. Lodish Molecular Cell Biology , 1986 .

[32]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[33]  Li Li,et al.  The mitochondrial inner membrane protein mitofilin controls cristae morphology. , 2005, Molecular biology of the cell.

[34]  E. Wu,et al.  The mobility of a fluorescent ubiquinone in model lipid membranes. Relevance to mitochondrial electron transport. , 1991, Biochimica et biophysica acta.

[35]  Mark C Leake,et al.  Clustering and dynamics of cytochrome bd‐I complexes in the Escherichia coli plasma membrane in vivo , 2008, Molecular microbiology.

[36]  D. Sherratt,et al.  In Vivo Architecture and Action of Bacterial Structural Maintenance of Chromosome Proteins , 2012, Science.

[37]  Verena Wilkens,et al.  Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution , 2013, Journal of Cell Science.

[38]  R. Cherry,et al.  Detecting and quantifying colocalization of cell surface molecules by single particle fluorescence imaging. , 2003, Biophysical journal.

[39]  R. Hengge,et al.  Rare codons play a positive role in the expression of the stationary phase sigma factor RpoS (σS) in Escherichia coli , 2011, RNA biology.

[40]  H. Schägger,et al.  Two‐dimensional native electrophoretic analysis of respiratory supercomplexes from Yarrowia lipolytica , 2009, Proteomics.

[41]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[42]  H Lodish Test bank for molecular cell biology, 4e , 2000 .

[43]  K. Vávrová,et al.  Synthesis of fluorescent C24-ceramide: evidence for acyl chain length dependent differences in penetration of exogenous NBD-ceramides into human skin. , 2009, Bioorganic & medicinal chemistry letters.

[44]  B. Cui,et al.  One at a time, live tracking of NGF axonal transport using quantum dots , 2007, Proceedings of the National Academy of Sciences.

[45]  E. Boye,et al.  Bacterial growth control studied by flow cytometry. , 1991, Research in microbiology.

[46]  Thorsten Friedrich,et al.  Organization of the Escherichia coli aerobic enzyme complexes of oxidative phosphorylation in dynamic domains within the cytoplasmic membrane , 2014, MicrobiologyOpen.

[47]  Kevin Burrage,et al.  Inferring diffusion in single live cells at the single-molecule level , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[48]  M. Leake,et al.  molecule precision biological questions in living, functioning cells with single Experimental approaches for addressing fundamental , 2012 .

[49]  Sylvain V Costes,et al.  Automatic and quantitative measurement of protein-protein colocalization in live cells. , 2004, Biophysical journal.

[50]  T. Conrads,et al.  Supramolecular organizations in the aerobic respiratory chain of Escherichia coli. , 2011, Biochimie.

[51]  L. Yu,et al.  Effect of alkyl side chain variation on the electron-transfer activity of ubiquinone derivatives. , 1985, Biochemistry.

[52]  C. López-Otín,et al.  Supercomplex Assembly Determines Electron Flux in the Mitochondrial Electron Transport Chain , 2013, Science.

[53]  Peter R. Rich,et al.  Control of electron transport routes through redox-regulated redistribution of respiratory complexes , 2012, Proceedings of the National Academy of Sciences.

[54]  R A Stuart,et al.  The Cytochrome bc 1 and Cytochromec Oxidase Complexes Associate to Form a Single Supracomplex in Yeast Mitochondria* , 2000, The Journal of Biological Chemistry.

[55]  Eric J. Deeds,et al.  Robust protein–protein interactions in crowded cellular environments , 2007, Proceedings of the National Academy of Sciences.

[56]  Prabuddha Sengupta,et al.  Critical fluctuations in plasma membrane vesicles. , 2008, ACS chemical biology.

[57]  G. Wadhams,et al.  Stoichiometry and turnover in single, functioning membrane protein complexes , 2006, Nature.

[58]  G. Schütz,et al.  Single molecule diffusion analysis on cellular nanotubules : Implications on plasma membrane structure below the diffraction limit , 2007 .

[59]  Itzhak Fishov,et al.  Visualization of membrane domains in Escherichia coli , 1999, Molecular microbiology.

[60]  Santiago Costantino,et al.  A guide to accurate fluorescence microscopy colocalization measurements. , 2006, Biophysical journal.

[61]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.

[62]  G. Schütz,et al.  Ultrasensitive Microscopy of the Plasma Membrane of Living Cells , 2001, Journal of Fluorescence.

[63]  R. Berry,et al.  Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging , 2008, Proceedings of the National Academy of Sciences.

[64]  P. Rich The molecular machinery of Keilin's respiratory chain. , 2003, Biochemical Society transactions.

[65]  M. Finel,et al.  Assembly of Respiratory Complexes I, III, and IV into NADH Oxidase Supercomplex Stabilizes Complex I in Paracoccus denitrificans* , 2004, Journal of Biological Chemistry.

[66]  K. Pfeiffer,et al.  Supercomplexes in the respiratory chains of yeast and mammalian mitochondria , 2000, The EMBO journal.

[67]  E. Cox,et al.  Site-specific chromosomal integration of large synthetic constructs , 2010, Nucleic acids research.

[68]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Josep C. Pàmies,et al.  Protein shape and crowding drive domain formation and curvature in biological membranes. , 2008, Biophysical journal.