Deep transfer learning for star cluster classification: I. application to the PHANGS–HST survey
暂无分享,去创建一个
E. Huerta | Wei Wei | A. Schruba | J. Kruijssen | B. Whitmore | D. Thilker | G. Blanc | R. Chandar | M. Boquien | D. Dale | L. Úbeda | Janice C. Lee | K. Larson | M. Chevance | E. Congiu | S. Hannon
[1] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[2] G. de Vaucouleurs,et al. Revised Classification of 1500 Bright Galaxies. , 1963 .
[3] Edward J. Shaya,et al. Planetary Camera observations of NGC 1275 - Discovery of a central population of compact massive blue star clusters , 1992 .
[4] William B. Sparks,et al. Hubble Space Telescope Observations of Globular Clusters in M87 and an Estimate of H0 , 1995 .
[5] S. Djorgovski,et al. Automated Star/Galaxy Classification for Digitized Poss-II , 1995 .
[6] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[7] S. M. Fall,et al. Hubble Space Telescope Observations of Candidate Young Globular Clusters and Stellar Associations in the Recent Merger Remnant NGC 3921 , 1996 .
[8] S. S. Larsen. ASTROPHYSICS Young massive star clusters in nearby galaxies ⋆ II. Software tools, data reductions and cluster sizes , 1999 .
[9] The Luminosity Function of Star Clusters in Spiral Galaxies , 2002, astro-ph/0206295.
[10] Bruce Margon,et al. A Census of Object Types and Redshift Estimates in the SDSS Photometric Catalog from a Trained Decision-Tree Classifier , 2005 .
[11] Robert J. Brunner,et al. Robust Machine Learning Applied to Astronomical Data Sets. I. Star-Galaxy Classification of the Sloan Digital Sky Survey DR3 Using Decision Trees , 2006, astro-ph/0606541.
[12] Robert J. Brunner,et al. Robust Machine Learning Applied to Astronomical Data Sets. III. Probabilistic Photometric Redshifts for Galaxies and Quasars in the SDSS and GALEX , 2008, 0804.3413.
[13] Donald W. Sweeney,et al. LSST Science Book, Version 2.0 , 2009, 0912.0201.
[14] C. Lintott,et al. Galaxy Zoo: reproducing galaxy morphologies via machine learning★ , 2009, 0908.2033.
[15] M. Dopita,et al. THE LUMINOSITY, MASS, AND AGE DISTRIBUTIONS OF COMPACT STAR CLUSTERS IN M83 BASED ON HUBBLE SPACE TELESCOPE/WIDE FIELD CAMERA 3 OBSERVATIONS , 2010, 1007.5237.
[16] Simon Portegies Zwart,et al. Young Massive Star Clusters , 2010, 1002.1961.
[17] E. C. Vasconcellos,et al. DECISION TREE CLASSIFIERS FOR STAR/GALAXY SEPARATION , 2010, 1011.1951.
[18] G. Vallone,et al. Phase control of a path‐entangled photon state by a deformable membrane mirror , 2011 .
[19] M. Gieles,et al. Stellar clusters in M83: formation, evolution, disruption and the influence of the environment , 2011, 1109.6015.
[20] David W. Hogg,et al. STAR–GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING , 2012, 1206.4306.
[21] Kilian Q. Weinberger,et al. Proceedings of the 25th International Conference on Neural Information Processing Systems , 2012 .
[22] G. Zamorani,et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS) - A support vector machine classification of galaxies, stars, and AGNs , 2013, 1303.2621.
[23] C. Lintott,et al. Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey , 2013, 1308.3496.
[24] R. J. Brunner,et al. TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.
[25] The University of Toledo,et al. STAR-CLUSTER MASS AND AGE DISTRIBUTIONS OF TWO FIELDS IN M83 BASED ON HST/WFC3 OBSERVATIONS , 2014, 1406.1157.
[26] Luc Van Gool,et al. The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.
[27] Caltech,et al. LEGACY EXTRAGALACTIC UV SURVEY (LEGUS) WITH THE HUBBLE SPACE TELESCOPE. I. SURVEY DESCRIPTION , 2014, 1410.7456.
[28] A. Leroy,et al. ALMA OBSERVATIONS OF THE ANTENNAE GALAXIES. I. A NEW WINDOW ON A PROTOTYPICAL MERGER , 2014, 1410.4473.
[29] N. Bastian,et al. THE SNAPSHOT HUBBLE U-BAND CLUSTER SURVEY (SHUCS). II. THE STAR CLUSTER POPULATION OF NGC 2997 , 2014, 1405.5881.
[30] Linda J. Smith,et al. THE BRIGHTEST YOUNG STAR CLUSTERS IN NGC 5253 , 2015, 1508.04476.
[31] S. M. Fall,et al. VERSION 1 OF THE HUBBLE SOURCE CATALOG , 2015, 1602.04861.
[32] Ignacio Sevilla-Noarbe,et al. Effect of training characteristics on object classification: An application using Boosted Decision Trees , 2015, Astron. Comput..
[33] Geoffrey E. Hinton,et al. Deep Learning , 2015, Nature.
[34] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[35] Sander Dieleman,et al. Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.
[36] Dumitru Erhan,et al. Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[37] Michael S. Bernstein,et al. ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.
[38] Andrew Zisserman,et al. Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.
[39] Jian Sun,et al. Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[40] B. Whitmore,et al. THE AGE, MASS, AND SIZE DISTRIBUTIONS OF STAR CLUSTERS IN M51 , 2016 .
[41] Edward J. Kim,et al. Star-galaxy Classification Using Deep Convolutional Neural Networks , 2016, ArXiv.
[42] Robert J. Brunner,et al. Machine Learning and Cosmological Simulations I: Semi-Analytical Models , 2015, 1510.06402.
[43] R. Nichol,et al. The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.
[44] M. Gromadzki,et al. Automated novelty detection in the WISE survey with one-class support vector machines , 2017, 1706.06389.
[45] B. Ishak,et al. Statistics, data mining, and machine learning in astronomy: a practical Python guide for the analysis of survey data, by Željko Ivezić, Andrew J. Connolly, Jacob T. VanderPlas and Alexander Gray , 2017 .
[46] Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO , 2017, ArXiv.
[47] Linda J. Smith,et al. Effective Radii of Young, Massive Star Clusters in Two LEGUS Galaxies , 2017, 1705.02692.
[48] J. Prieto,et al. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628 , 2017, 1705.01588.
[49] Daniel George,et al. Glitch Classification and Clustering for LIGO with Deep Transfer Learning , 2017, ArXiv.
[50] Linda J. Smith,et al. The spatial relation between young star clusters and molecular clouds in M51 with LEGUS , 2018, Monthly Notices of the Royal Astronomical Society.
[51] Ce Zhang,et al. Using transfer learning to detect galaxy mergers , 2018, Monthly Notices of the Royal Astronomical Society.
[52] D. Gouliermis. Unbound Young Stellar Systems: Star Formation on the Loose , 2018, Publications of the Astronomical Society of the Pacific.
[53] D. Calzetti,et al. The young star cluster population of M51 with LEGUS – I. A comprehensive study of cluster formation and evolution , 2017, 1709.06101.
[54] D. Gerdes,et al. Transfer learning for galaxy morphology from one survey to another , 2018, Monthly Notices of the Royal Astronomical Society.
[55] J. Bland-Hawthorn,et al. Star Clusters Across Cosmic Time , 2018, Annual Review of Astronomy and Astrophysics.
[56] D. Calzetti,et al. Star cluster catalogues for the LEGUS dwarf galaxies , 2019, Monthly Notices of the Royal Astronomical Society.
[57] Sibo Wang,et al. Unsupervised learning and data clustering for the construction of Galaxy Catalogs in the Dark Energy Survey , 2018, Physics Letters B.
[58] P. H. Barchi,et al. Machine and Deep Learning applied to galaxy morphology - A comparative study , 2019, Astron. Comput..
[59] HE Ixtroductiont,et al. The Bell System Technical Journal , 2022 .