Deep transfer learning for star cluster classification: I. application to the PHANGS–HST survey

We present the results of a proof-of-concept experiment which demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in HST UV-optical imaging of nearby spiral galaxies in the PHANGS-HST survey. Given the relatively small and unbalanced nature of existing, human-labelled star cluster datasets, we transfer the knowledge of neural network models for real-object recognition to classify star clusters candidates into four morphological classes. We show that human classification is at the 66%:37%:40%:61% agreement level for the four classes considered. Our findings indicate that deep learning algorithms achieve 76%:63%:59%:70% for a star cluster sample within 4Mpc < D <10Mpc. We tested the robustness of our deep learning algorithms to generalize to different cluster images using the first data obtained by PHANGS-HST of NGC1559, which is more distant at D = 19Mpc, and found that deep learning produces classification accuracies 73%:42%:52%:67%. We furnish evidence for the robustness of these analyses by using two different neural network models for image classification, trained multiple times from the ground up to assess the variance and stability of our results. We quantified the importance of the NUV, U, B, V and I images for morphological classification with our deep learning models, and find that the V-band is the key contributor as human classifications are based on images taken in that filter. This work lays the foundations to automate classification for these objects at scale, and the creation of a standardized dataset.

[1]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[2]  G. de Vaucouleurs,et al.  Revised Classification of 1500 Bright Galaxies. , 1963 .

[3]  Edward J. Shaya,et al.  Planetary Camera observations of NGC 1275 - Discovery of a central population of compact massive blue star clusters , 1992 .

[4]  William B. Sparks,et al.  Hubble Space Telescope Observations of Globular Clusters in M87 and an Estimate of H0 , 1995 .

[5]  S. Djorgovski,et al.  Automated Star/Galaxy Classification for Digitized Poss-II , 1995 .

[6]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[7]  S. M. Fall,et al.  Hubble Space Telescope Observations of Candidate Young Globular Clusters and Stellar Associations in the Recent Merger Remnant NGC 3921 , 1996 .

[8]  S. S. Larsen ASTROPHYSICS Young massive star clusters in nearby galaxies ⋆ II. Software tools, data reductions and cluster sizes , 1999 .

[9]  The Luminosity Function of Star Clusters in Spiral Galaxies , 2002, astro-ph/0206295.

[10]  Bruce Margon,et al.  A Census of Object Types and Redshift Estimates in the SDSS Photometric Catalog from a Trained Decision-Tree Classifier , 2005 .

[11]  Robert J. Brunner,et al.  Robust Machine Learning Applied to Astronomical Data Sets. I. Star-Galaxy Classification of the Sloan Digital Sky Survey DR3 Using Decision Trees , 2006, astro-ph/0606541.

[12]  Robert J. Brunner,et al.  Robust Machine Learning Applied to Astronomical Data Sets. III. Probabilistic Photometric Redshifts for Galaxies and Quasars in the SDSS and GALEX , 2008, 0804.3413.

[13]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[14]  C. Lintott,et al.  Galaxy Zoo: reproducing galaxy morphologies via machine learning★ , 2009, 0908.2033.

[15]  M. Dopita,et al.  THE LUMINOSITY, MASS, AND AGE DISTRIBUTIONS OF COMPACT STAR CLUSTERS IN M83 BASED ON HUBBLE SPACE TELESCOPE/WIDE FIELD CAMERA 3 OBSERVATIONS , 2010, 1007.5237.

[16]  Simon Portegies Zwart,et al.  Young Massive Star Clusters , 2010, 1002.1961.

[17]  E. C. Vasconcellos,et al.  DECISION TREE CLASSIFIERS FOR STAR/GALAXY SEPARATION , 2010, 1011.1951.

[18]  G. Vallone,et al.  Phase control of a path‐entangled photon state by a deformable membrane mirror , 2011 .

[19]  M. Gieles,et al.  Stellar clusters in M83: formation, evolution, disruption and the influence of the environment , 2011, 1109.6015.

[20]  David W. Hogg,et al.  STAR–GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING , 2012, 1206.4306.

[21]  Kilian Q. Weinberger,et al.  Proceedings of the 25th International Conference on Neural Information Processing Systems , 2012 .

[22]  G. Zamorani,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS) - A support vector machine classification of galaxies, stars, and AGNs , 2013, 1303.2621.

[23]  C. Lintott,et al.  Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey , 2013, 1308.3496.

[24]  R. J. Brunner,et al.  TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.

[25]  The University of Toledo,et al.  STAR-CLUSTER MASS AND AGE DISTRIBUTIONS OF TWO FIELDS IN M83 BASED ON HST/WFC3 OBSERVATIONS , 2014, 1406.1157.

[26]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[27]  Caltech,et al.  LEGACY EXTRAGALACTIC UV SURVEY (LEGUS) WITH THE HUBBLE SPACE TELESCOPE. I. SURVEY DESCRIPTION , 2014, 1410.7456.

[28]  A. Leroy,et al.  ALMA OBSERVATIONS OF THE ANTENNAE GALAXIES. I. A NEW WINDOW ON A PROTOTYPICAL MERGER , 2014, 1410.4473.

[29]  N. Bastian,et al.  THE SNAPSHOT HUBBLE U-BAND CLUSTER SURVEY (SHUCS). II. THE STAR CLUSTER POPULATION OF NGC 2997 , 2014, 1405.5881.

[30]  Linda J. Smith,et al.  THE BRIGHTEST YOUNG STAR CLUSTERS IN NGC 5253 , 2015, 1508.04476.

[31]  S. M. Fall,et al.  VERSION 1 OF THE HUBBLE SOURCE CATALOG , 2015, 1602.04861.

[32]  Ignacio Sevilla-Noarbe,et al.  Effect of training characteristics on object classification: An application using Boosted Decision Trees , 2015, Astron. Comput..

[33]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[34]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[35]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[36]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[38]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[39]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  B. Whitmore,et al.  THE AGE, MASS, AND SIZE DISTRIBUTIONS OF STAR CLUSTERS IN M51 , 2016 .

[41]  Edward J. Kim,et al.  Star-galaxy Classification Using Deep Convolutional Neural Networks , 2016, ArXiv.

[42]  Robert J. Brunner,et al.  Machine Learning and Cosmological Simulations I: Semi-Analytical Models , 2015, 1510.06402.

[43]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[44]  M. Gromadzki,et al.  Automated novelty detection in the WISE survey with one-class support vector machines , 2017, 1706.06389.

[45]  B. Ishak,et al.  Statistics, data mining, and machine learning in astronomy: a practical Python guide for the analysis of survey data, by Željko Ivezić, Andrew J. Connolly, Jacob T. VanderPlas and Alexander Gray , 2017 .

[46]  Deep Transfer Learning: A new deep learning glitch classification method for advanced LIGO , 2017, ArXiv.

[47]  Linda J. Smith,et al.  Effective Radii of Young, Massive Star Clusters in Two LEGUS Galaxies , 2017, 1705.02692.

[48]  J. Prieto,et al.  Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628 , 2017, 1705.01588.

[49]  Daniel George,et al.  Glitch Classification and Clustering for LIGO with Deep Transfer Learning , 2017, ArXiv.

[50]  Linda J. Smith,et al.  The spatial relation between young star clusters and molecular clouds in M51 with LEGUS , 2018, Monthly Notices of the Royal Astronomical Society.

[51]  Ce Zhang,et al.  Using transfer learning to detect galaxy mergers , 2018, Monthly Notices of the Royal Astronomical Society.

[52]  D. Gouliermis Unbound Young Stellar Systems: Star Formation on the Loose , 2018, Publications of the Astronomical Society of the Pacific.

[53]  D. Calzetti,et al.  The young star cluster population of M51 with LEGUS – I. A comprehensive study of cluster formation and evolution , 2017, 1709.06101.

[54]  D. Gerdes,et al.  Transfer learning for galaxy morphology from one survey to another , 2018, Monthly Notices of the Royal Astronomical Society.

[55]  J. Bland-Hawthorn,et al.  Star Clusters Across Cosmic Time , 2018, Annual Review of Astronomy and Astrophysics.

[56]  D. Calzetti,et al.  Star cluster catalogues for the LEGUS dwarf galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[57]  Sibo Wang,et al.  Unsupervised learning and data clustering for the construction of Galaxy Catalogs in the Dark Energy Survey , 2018, Physics Letters B.

[58]  P. H. Barchi,et al.  Machine and Deep Learning applied to galaxy morphology - A comparative study , 2019, Astron. Comput..

[59]  HE Ixtroductiont,et al.  The Bell System Technical Journal , 2022 .