Backwards theory supports modelling via invariant manifolds for non-autonomous dynamical systems

This article takes the first step in reforming a theory of invariant/integral manifolds for non-autonomous dynamical systems. Current rigorous support for dimensional reduction modelling of slow-fast systems is very limited by the rare events in stochastic systems that may cause escape, and limited in many applications by the unbounded nature of PDE operators. To circumvent such limitations, we initiate developing a `backwards' theory of invariant/integral manifolds. Here, for deterministic non-autonomous ODE systems, we construct a conjugacy with a normal form system to establish the existence, emergence and exact construction of centre manifolds in a finite domain for systems `arbitrarily close' to that specified. A benefit is that the constructed invariant manifolds are known to be exact for systems `close' to the one specified, and hence the only error is in determining how close over the domain of interest for any specific application. Built on the base developed here, planned future research should develop a theory for stochastic and/or PDE systems that is more useful in a wider range of modelling applications than previously established theory.

[1]  Chao Xu,et al.  On the low-dimensional modelling of Stratonovich stochastic differential equations , 1996, chao-dyn/9705002.

[2]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[3]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds up to exponentially small errors , 1996 .

[4]  Martin Rasmussen,et al.  Computation of nonautonomous invariant and inertial manifolds , 2009, Numerische Mathematik.

[5]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[6]  Martin Rasmussen,et al.  Taylor Approximation of Integral Manifolds , 2006 .

[7]  N. G. van Kampen,et al.  Itô versus Stratonovich , 1981 .

[8]  C. Mei The applied dynamics of ocean surface waves , 1983 .

[9]  G. Froyland,et al.  Transport in time-dependent dynamical systems: finite-time coherent sets. , 2010, Chaos.

[10]  S. Jacobs,et al.  Existence of a Slow Manifold in a Model System of Equations , 1991 .

[11]  N. Berglund,et al.  Geometric singular perturbation theory for stochastic differential equations , 2002, math/0204008.

[12]  Lloyd N. Trefethen,et al.  Computation of pseudospectra , 1999, Acta Numerica.

[13]  André Vanderbauwhede,et al.  Centre Manifolds, Normal Forms and Elementary Bifurcations , 1989 .

[14]  Robert G. Muncaster,et al.  The theory of pseudo-rigid bodies , 1988 .

[15]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[16]  N. D. Cong,et al.  On stable manifolds for fractional differential equations in high-dimensional spaces , 2016, 1603.05340.

[17]  Anthony J. Roberts Simple examples of the derivation of amplitude equations for systems of equations possessing bifurcations , 1985, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[18]  C. Leith Nonlinear Normal Mode Initialization and Quasi-Geostrophic Theory , 1980 .

[19]  A. Roberts,et al.  Normal forms and invariant manifolds for nonlinear, non-autonomous PDEs, viewed as ODEs in infinite dimensions , 2019, Journal of Differential Equations.

[20]  Jacques Vanneste,et al.  Asymptotics of a Slow Manifold , 2008, SIAM J. Appl. Dyn. Syst..

[21]  A. Fowler,et al.  The Lorenz-Krishnamurthy slow manifold , 1996 .

[22]  J. Carr Applications of Centre Manifold Theory , 1981 .

[23]  Robert G. Muncaster,et al.  Invariant manifolds in mechanics II: Zero-dimensional elastic bodies with directors , 1984 .

[24]  Claude-Henri Lamarque,et al.  An upper bound for validity limits of asymptotic analytical approaches based on normal form theory , 2012 .

[25]  Anthony J. Roberts,et al.  Boundary conditions for approximate differential equations , 1992, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[26]  I. Pavlyukevich,et al.  Marcus versus Stratonovich for systems with jump noise , 2014, 1406.0112.

[27]  Sanjeeva Balasuriya Local Stable and Unstable Manifolds and Their Control in Nonautonomous Finite-Time Flows , 2016, J. Nonlinear Sci..

[28]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[29]  V. Araújo Random Dynamical Systems , 2006, math/0608162.

[30]  Gary Froyland,et al.  An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems , 2012, 1210.7418.

[31]  H. W. Knobloch,et al.  The role of center manifolds in ordinary differential equations , 1982 .

[32]  E. A. Spiegel,et al.  Amplitude Equations for Systems with Competing Instabilities , 1983 .

[33]  Edward N. Lorenz,et al.  The Slow Manifold—What Is It? , 1992 .

[34]  A. J. Roberts,et al.  Normal form transforms separate slow and fast modes in stochastic dynamical systems , 2008 .

[35]  C. Chicone,et al.  Center Manifolds for Infinite Dimensional Nonautonomous Differential Equations , 1997 .

[36]  Joseph F. Grcar,et al.  John von Neumann's Analysis of Gaussian Elimination and the Origins of Modern Numerical Analysis , 2011, SIAM Rev..

[37]  M. Rasmussen,et al.  Invariant manifolds as pullback attractors of nonautonomous differential equations , 2006 .

[38]  Multi-scale analysis of SPDEs with degenerate additive noise , 2014 .

[39]  M. Rasmussen,et al.  Computation of integral manifolds for Carathéodory differential equations , 2010 .

[40]  M. Haragus,et al.  Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems , 2010 .

[41]  Anthony J. Roberts,et al.  Appropriate initial conditions for asymptotic descriptions of the long term evolution of dynamical systems , 1989, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[42]  On Local Center Unstable Manifolds , 2003 .

[43]  R. Camassa On the geometry of an atmospheric slow manifold , 1995 .

[44]  Colin J. Cotter,et al.  Semigeostrophic Particle Motion and Exponentially Accurate Normal forms , 2005, Multiscale Model. Simul..

[45]  B. Aulbach,et al.  The Hartman-Grobman theorem for Carathéodory-type differential equations in Banach spaces , 2000 .

[46]  A. J. G. Bento,et al.  Global Lipschitz Invariant Center Manifolds for ODEs with Generalized Trichotomies , 2017, 1707.08909.

[47]  Alexander Mielke,et al.  Reduction of PDEs on domains with several unbounded directions: A first step towards modulation equations , 1992 .

[48]  M. Kruskal,et al.  Asymptotic Theory of Hamiltonian and other Systems with all Solutions Nearly Periodic , 1962 .

[49]  James Murdock,et al.  Normal Forms and Unfoldings for Local Dynamical Systems , 2002 .

[50]  George Haller,et al.  Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction , 2016, 1602.00560.

[51]  Arnab Ghosh,et al.  Sensitivity and Backward Perturbation Analysis of Multiparameter Eigenvalue Problems , 2018, SIAM J. Matrix Anal. Appl..

[52]  Jan Sijbrand,et al.  Properties of center manifolds , 1985 .

[53]  Igor Mezic,et al.  Linearization in the large of nonlinear systems and Koopman operator spectrum , 2013 .

[54]  M. Haragus Reduction of PDEs on Unbounded Domains. Application: Unsteady Water-Waves Problem , 1998 .

[55]  Alain Bensoussan,et al.  Stochastic inertial manifold , 1995 .

[56]  G. Haller Finding finite-time invariant manifolds in two-dimensional velocity fields. , 2000, Chaos.

[57]  J. Ginoux The Slow Invariant Manifold of the Lorenz–Krishnamurthy Model , 2014, 1808.08058.

[58]  G. Iooss,et al.  Approximate invariant manifolds up to exponentially small terms , 2010 .