SommarioSi considerano certe categorie di strutture costituite da un numero discreto di parti a comportamento non lineare e si formula il problema della ricerca dello scostamento del loro stato di sforzo e deformazione per dati carichi, da quello che si avrebbe in regime elastico lineare. Nei vari casi considerati il problema si riduce ad un programma quadratico con variabili soggette solo a restrizioni di segno. Il teorema di Kuhn e Tucker per programmazione quadratica fornisce gli opportuni principi di estremo, per i quali si propongono interpretazioni fisiche. Altri teoremi di programmazione quadratica si rivelano utili nel discutere la soluzione dei problemi formulati.SummaryThe search for the deviation from the linear elastic, of the response of a nonlinear discrete structure to given loads, is formulated for various classes of cases. All the problems considered are shown to be reducible to a single mathematical model: the quadratic program with sign constraints only. The Kubn-Tucker theorem for quadratic programming directly supplies the appropriate extremum principles, for which some physical interpretations are proposed. Other results of quadratic programming theory prove to be useful in the discussion of the structural problems considered.
[1]
W. T. Koiter.
Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface
,
1953
.
[2]
N. J. Hoff,et al.
Approximate analysis of structures in the presence of moderately large creep deformations
,
1954
.
[3]
Clifford Hildreth,et al.
A quadratic programming procedure
,
1957
.
[4]
D. D'Esopo,et al.
A convex programming procedure
,
1959
.
[5]
Elasticity and plasticity
,
1960
.
[6]
W. T. Koiter.
General theorems for elastic plastic solids
,
1960
.
[7]
George B. Dantzig,et al.
Linear programming and extensions
,
1965
.
[8]
A maximum principle for the analysis of elastic-plastic systems
,
1966
.
[9]
P. Hodge.
Yield-point load determination by nonlinear programming
,
1966
.
[10]
Giulio Maier,et al.
On elastic-plastic structures with associated stress-strain relations allowing for work softening
,
1967
.