The non-coprime k(GV) problem

Abstract Let V be a finite faithful completely reducible FG-module for a finite field F and a finite group G. In various cases explicit linear bounds in | V | are given for the numbers of conjugacy classes k ( G V ) and k ( G ) of the semidirect product GV and of the group G respectively. These results concern the so-called non-coprime k ( G V ) -problem.

[1]  G. Michler,et al.  Character table and blocks of finite simple triality groups , 1987 .

[2]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[3]  Roger W. Carter,et al.  Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .

[4]  A. L. Onishchik,et al.  Lie Groups and Lie Algebras III , 1993 .

[5]  W. Feit,et al.  ON THE NUMBER OF IRREDUCIBLE CHARACTERS OF FINITE GROUPS IN A GIVEN BLOCK. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. Seitz,et al.  On the minimal degrees of projective representations of the finite Chevalley groups , 1974 .

[7]  Bomshik Chang,et al.  The conjugate classes of Chevalley groups of type (G2) , 1968 .

[8]  Ross Lawther,et al.  Correction to 'Jordan block sizes of unipotent elements in exceptional algebraic groups' , 1998, Communications in Algebra.

[9]  Frank Lübeck,et al.  On p-singular elements in Chevalley groups in characteristic ρ , 2001 .

[10]  Gunter Malle,et al.  CORRIGENDA: LOW-DIMENSIONAL REPRESENTATIONS OF QUASI-SIMPLE GROUPS , 2002 .

[11]  G. Robinson On Brauer's k(B) problem , 1992 .

[12]  T. Wolf,et al.  Representations of Solvable Groups , 1993 .

[13]  M. Aschbacher Finite Group Theory: Representations of groups on groups , 2000 .

[14]  Hirosi Nagao On a conjecture of Brauer for $p$-solvable groups , 1962 .

[15]  P. Hall,et al.  On the p‐Length of p‐Soluble Groups and Reduction Theorems for Burnside's Problem , 1956 .

[16]  Antonio Vera López,et al.  On the number of conjugacy classes in a finite group , 1988 .

[17]  ec 1 99 7 Cycle Indices for the Finite Classical Groups By Jason Fulman Dartmouth College , .

[18]  Attila Maróti,et al.  Bounding the number of conjugacy classes of a permutation group , 2005 .

[19]  L. E. Dickson Group Theory: 8 , 1905 .

[20]  Jason Fulman,et al.  Conjugacy class properties of the extension of GL(n,q) generated by the inverse transpose involution , 2003 .

[21]  C. Jansen The Minimal Degrees of Faithful Representations of the Sporadic Simple Groups and their Covering Groups , 2005, LMS J. Comput. Math..

[22]  Robert M. Guralnick,et al.  Generation of finite almost simple groups by conjugates , 2003 .

[23]  P. Tiep,et al.  Some Characterizations of the Weil Representations of the Symplectic and Unitary Groups , 1997 .

[24]  R. Baer Engelsche Elemente Noetherscher Gruppen , 1957 .

[25]  R. Guralnick,et al.  Cross characteristic representations of symplectic and unitary groups , 2002 .

[26]  R. Guralnick,et al.  Cross characteristic representations of even characteristic symplectic groups , 2004 .

[27]  Fixed conjugacy classes of normal subgroups and the k(GV)-problem , 2005, math/0504574.

[28]  G. E. Wall On the conjugacy classes in the unitary, symplectic and orthogonal groups , 1963, Journal of the Australian Mathematical Society.

[29]  I. MacDonald Numbers of conjugacy classes in some finite classical groups , 1981, Bulletin of the Australian Mathematical Society.

[30]  R. Guralnick,et al.  Classification of 2F-modules, I , 2002 .

[31]  Bhama Srinivasan,et al.  The characters of the finite symplectic group (4 , 1968 .

[32]  J. Conway,et al.  Atlas of finite groups : maximal subgroups and ordinary characters for simple groups , 1987 .

[33]  Counting characters in linear group actions , 2007, 0704.0581.

[34]  W. Hesselink Nilpotency in classical groups over a field of characteristic 2 , 1979 .

[35]  Christoph Jansen,et al.  An Atlas of Brauer Characters , 1995 .

[36]  P. Tiep LOW DIMENSIONAL REPRESENTATIONS OF FINITE QUASISIMPLE GROUPS , 2003 .

[37]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[38]  Olaf Manz,et al.  Representations of Solvable Groups: Contents , 1993 .

[39]  László Pyber,et al.  Upper Bounds for the Number of Conjugacy Classes of a Finite Group , 1997 .

[40]  I. Isaacs Character Theory of Finite Groups , 1976 .

[41]  P. Tiep,et al.  On restrictions of modular spin representations of symmetric and alternating groups , 2003 .

[42]  Kay Magaard,et al.  Irreducibility of alternating and¶symmetric squares , 1998 .

[43]  Frank Lübeck Small Degree Representations of Finite Chevalley Groups in Defining Characteristic , 2001, LMS J. Comput. Math..