Universal quantum walks and adiabatic algorithms by 1D Hamiltonians

We construct a family of time-independent nearest-neighbor Hamiltonians coupling eight-state systems on a 1D ring that enables universal quantum computation. Hamiltonians in this family can achieve universality either by driving a continuous-time quantum walk or by terminating an adiabatic algorithm. In either case, the universality property can be understood as arising from an efficient simulation of a programmable quantum circuit. Using gadget perturbation theory, one can demonstrate the same kind of universality for related Hamiltonian families acting on qubits in 2D. Our results demonstrate that simulating 1D chains of spin-7/2 particles is BQP-hard, and indeed BQP-complete because the outputs of decision problems can be encoded in the outputs of such simulations.

[1]  John Watrous,et al.  On one-dimensional quantum cellular automata , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[2]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[3]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[4]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[5]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[6]  A. Barenco A universal two-bit gate for quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[7]  Pawel Wocjan,et al.  Ergodic Quantum Computing , 2005, Quantum Inf. Process..

[8]  R. Feynman Quantum mechanical computers , 1986 .

[9]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[10]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[11]  Tobias J. Osborne The Dynamics of 1D Quantum Spin Systems Can Be Approximated Efficiently , 2005 .

[12]  J. Cirac,et al.  Quantum simulators, continuous-time automata, and translationally invariant systems. , 2007, Physical review letters.

[13]  P. Oscar Boykin,et al.  A new universal and fault-tolerant quantum basis , 2000, Inf. Process. Lett..

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[15]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[16]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[17]  Sandy Irani,et al.  The Power of Quantum Systems on a Line , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[18]  R. Landauer The physical nature of information , 1996 .

[19]  A. Turing,et al.  On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction , 1938 .

[20]  Daniel A. Lidar,et al.  Towards fault tolerant adiabatic quantum computation. , 2007, Physical review letters.

[21]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[22]  Pawel Wocjan,et al.  Hamiltonian quantum cellular automata in one dimension , 2008, 0802.0886.

[23]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[24]  Barbara M. Terhal,et al.  The complexity of quantum spin systems on a two-dimensional square lattice , 2008, Quantum Inf. Comput..

[25]  D. Janzing Spin- 1 ∕ 2 particles moving on a two-dimensional lattice with nearest-neighbor interactions can realize an autonomous quantum computer , 2005, quant-ph/0506270.

[26]  Noah Linden,et al.  Propagation of quantum information through a spin system , 2004 .

[27]  D J Shepherd,et al.  Universally programmable quantum cellular automaton. , 2006, Physical review letters.

[28]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[29]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[30]  Matthias Christandl,et al.  Perfect Transfer of Arbitrary States in Quantum Spin Networks , 2005 .

[31]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[33]  T. Osborne Efficient approximation of the dynamics of one-dimensional quantum spin systems. , 2006, Physical review letters.

[34]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[35]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[36]  V. Roychowdhury,et al.  On Universal and Fault-Tolerant Quantum Computing , 1999, quant-ph/9906054.

[37]  Matthias Christandl,et al.  Perfect state transfer in quantum spin networks. , 2004, Physical review letters.

[38]  Wolfgang Spitzer,et al.  Improved Gap Estimates for Simulating Quantum Circuits by Adiabatic Evolution , 2007, Quantum Inf. Process..

[39]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.