Successful growth and room temperature ambient-pressure magnetic levitation of LK-99

Recently, Sukbae Lee et al. reported inspiring experimental findings on the atmospheric superconductivity of a modified lead apatite crystal (LK-99) at room temperature (10.6111/JKCGCT.2023.33.2.061, arXiv: 2307.12008, arXiv: 2307.12037). They claimed that the synthesized LK-99 materials exhibit the Meissner levitation phenomenon of superconductors and have a superconducting transition temperature (Tc) higher than 400 K. Here, for the first time, we successfully verify and synthesize the LK-99 crystals which can be magnetically levitated with larger levitated angle than Sukbae Lee's sample at room temperature. It is expected to realize the true potential of room temperature, non-contact superconducting magnetic levitation in near future.

[1]  K. Held,et al.  Electronic structure of the putative room-temperature superconductor Pb$_9$Cu(PO$_4$)$_6$O , 2023, 2308.00676.

[2]  S. Griffin Origin of correlated isolated flat bands in copper-substituted lead phosphate apatite , 2023, 2307.16892.

[3]  Peitao Liu,et al.  First-principles study on the electronic structure of Pb10−Cu (PO4)6O (x = 0, 1) , 2023, Journal of Materials Science & Technology.

[4]  S. Lee,et al.  Superconductor Pb$_{10-x}$Cu$_x$(PO$_4$)$_{6O}$ showing levitation at room temperature and atmospheric pressure and mechanism , 2023, 2307.12037.

[5]  Sukbae Lee,et al.  The Firs Room-Temperature Ambient-Pressure Superconductor , 2023, 2307.12008.

[6]  H. Hosono,et al.  Recent advances in iron-based superconductors toward applications , 2017, 1710.08574.

[7]  H. Hosono,et al.  Iron-based superconductors: Current status of materials and pairing mechanism , 2015, 1504.04919.

[8]  H. Hosono,et al.  Controlling factors of T c dome structure in 1111-type iron arsenide superconductors , 2013, 1312.6747.

[9]  M. Takata,et al.  Two-dome structure in electron-doped iron arsenide superconductors , 2012, Nature Communications.

[10]  Hideo Hosono,et al.  Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05—0.12) with Tc = 26 K. , 2008 .

[11]  Marcus Tegel,et al.  Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2. , 2008, Physical review letters.

[12]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[13]  P. Lee From high temperature superconductivity to quantum spin liquid: progress in strong correlation physics , 2007, 0708.2115.

[14]  T. Kamiya,et al.  Iron-based layered superconductor: LaOFeP. , 2006, Journal of the American Chemical Society.

[15]  M. Buchanan Mind the pseudogap , 1997, Nature.

[16]  M. Cantoni,et al.  Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system , 1993, Nature.

[17]  A. Hermann,et al.  Bulk superconductivity at 120 K in the Tl–Ca/Ba–Cu–O system , 1988, Nature.

[18]  T. G. Berlincourt,et al.  Emergence of NbTi as supermagnet material , 1987 .

[19]  Chu,et al.  Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. , 1987, Physical review letters.

[20]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[21]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[22]  D. K. Finnemore,et al.  Superconducting Properties of High-Purity Niobium , 1966 .

[23]  A. Rose‐Innes,et al.  SUPERCONDUCTIVITY OF VANADIUM , 1965 .

[24]  K. Cheng Theory of Superconductivity , 1948, Nature.

[25]  Helmut Eschrig,et al.  Microscopic theory of superconductivity , 1969 .

[26]  K. A. Müller,et al.  Possible High T cSuperconductivity in the Ba — La — Cu — O System , 1993 .