Decorous Lower Bounds for Minimum Linear Arrangement

Minimum linear arrangement is a classical basic combinatorial optimization problem from the 1960s that turns out to be extremely challenging in practice. In particular, for most of its benchmark instances, even the order of magnitude of the optimal solution value is unknown, as testified by the surveys on the problem that contain tables in which the best-known solution value often has one more digit than the best-known lower bound value. In this paper, we propose a linear programming-based approach to compute lower bounds on the optimum. This allows us, for the first time, to show that the best-known solutions are indeed not far from optimal for most of the benchmark instances.

[1]  Bojan Mohar,et al.  Optimal linear labelings and eigenvalues of graphs , 1992, Discret. Appl. Math..

[2]  R. Durbin,et al.  Optimal numberings of an N N array , 1986 .

[3]  Jin-Kao Hao,et al.  An effective two-stage simulated annealing algorithm for the minimum linear arrangement problem , 2008, Comput. Oper. Res..

[4]  Jordi Petit,et al.  Experiments on the minimum linear arrangement problem , 2003, ACM J. Exp. Algorithmics.

[5]  David Harel,et al.  A Multi-scale Algorithm for the Linear Arrangement Problem , 2002, WG.

[6]  Susanne E. Hambrusch,et al.  Planar linear arrangements of outerplanar graphs , 1988 .

[7]  Joseph Naor,et al.  Divide-and-conquer approximation algorithms via spreading metrics , 2000, JACM.

[8]  Adam N. Letchford,et al.  A polyhedral approach to the single row facility layout problem , 2013, Math. Program..

[9]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[10]  L. H. Harper Optimal Assignments of Numbers to Vertices , 1964 .

[11]  James R. Lee,et al.  An improved approximation ratio for the minimum linear arrangement problem , 2007, Inf. Process. Lett..

[12]  Juan José Salazar González,et al.  Laying Out Sparse Graphs with Provably Minimum Bandwidth , 2005, INFORMS J. Comput..

[13]  Ilya Safro,et al.  Graph minimum linear arrangement by multilevel weighted edge contractions , 2006, J. Algorithms.

[14]  Mohammad Taghi Hajiaghayi,et al.  L22 Spreading Metrics for Vertex Ordering Problems , 2006, SODA.

[15]  Mohammad Taghi Hajiaghayi,et al.  l22 spreading metrics for vertex ordering problems , 2006, SODA '06.

[16]  L. Beineke,et al.  Selected Topics in Graph Theory 2 , 1985 .

[17]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[18]  Weiguo Liu,et al.  Generating Lower Bounds for the Linear Arrangement Problem , 1995, Discret. Appl. Math..

[19]  Satish Rao,et al.  New Approximation Techniques for Some Linear Ordering Problems , 2005, SIAM J. Comput..

[20]  Ola Svensson,et al.  Inapproximability Results for Sparsest Cut, Optimal Linear Arrangement, and Precedence Constrained Scheduling , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[21]  Nisheeth K. Vishnoi,et al.  Integrality gaps for sparsest cut and minimum linear arrangement problems , 2006, STOC '06.

[22]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[23]  Jordi Petit,et al.  Combining Spectral Sequencing and Parallel Simulated Annealing for the MINLA Problem , 2003, Parallel Process. Lett..

[24]  Yossi Shiloach,et al.  A Minimum Linear Arrangement Algorithm for Undirected Trees , 1979, SIAM J. Comput..

[25]  Peter Dankelmann,et al.  On Path-Tough Graphs , 1994, SIAM J. Discret. Math..

[26]  Ted K. Ralphs,et al.  Integer and Combinatorial Optimization , 2013 .

[27]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[28]  Santosh S. Vempala,et al.  Flow Metrics , 2002, LATIN.

[29]  JOSEP DÍAZ,et al.  A survey of graph layout problems , 2002, CSUR.