A 300 mK ultra-high vacuum scanning tunneling microscope for spin-resolved spectroscopy at high energy resolution

We describe the design and development of a scanning tunneling micoscope (STM) working at very low temperatures in ultra-high vacuum (UHV) and at high magnetic fields. The STM is mounted to the 3He pot of an entirely UHV compatible 3He refrigerator inside a tube which can be baked out to achieve UHV conditions even at room temperature. A base temperature of 315 mK with a hold time of 30 h without any recondensing or refilling of cryogenics is achieved. The STM can be moved from the cryostat into a lower UHV-chamber system where STM-tips and -samples can be exchanged without breaking UHV. The chambers contain standard surface science tools for preparation and characterization of tips and samples in particular for spin-resolved scanning tunneling spectroscopy (STS). Test measurements using either superconducting tips or samples show that the system is adequate for performing STS with both high spatial and high energy resolution. The vertical stability of the tunnel junction is shown to be 5 pmpp and the ene...

[1]  R. Wiesendanger,et al.  Direct measurement of the local density of states of a disordered one-dimensional conductor. , 2003, Physical review letters.

[2]  M. Persson,et al.  Design and operation of a low-temperature scanning tunneling microscope suitable for operation below 1 K , 1992 .

[3]  E. M. Forgan,et al.  Observation of a square flux-line lattice in the unconventional superconductor Sr2RuO4 , 1998, Nature.

[4]  D. Bonnell Scanning tunneling microscopy and spectroscopy: Theory, techniques, and applications , 1993 .

[5]  H. Yamaguchi,et al.  Local density of states in zero-dimensional semiconductor structures. , 2001, Physical review letters.

[6]  R. Wiesendanger,et al.  Real-space observation of drift States in a two-dimensional electron system at high magnetic fields. , 2003, Physical review letters.

[7]  R. Wiesendanger,et al.  Spin-polarized scanning tunneling microscopy study of 360° walls in an external magnetic field , 2003 .

[8]  Jay Gupta,et al.  Understanding the Hopping Mechanism of Molecule Cascades at Very Low Temperatures , 2003 .

[9]  Z. Fisk,et al.  Heavy-Electron Metals: New Highly Correlated States of Matter , 1988, Science.

[10]  D. Eigler,et al.  Quantum mirages formed by coherent projection of electronic structure , 2000, Nature.

[11]  D. R. Tilley,et al.  Superfluidity and Superconductivity , 2019 .

[12]  A. Smith,et al.  Atomic-scale spin-polarized scanning tunneling microscopy applied to Mn3N2(010). , 2002, Physical review letters.

[13]  Fischer,et al.  A 3He refrigerated scanning tunneling microscope in high magnetic fields and ultrahigh vacuum , 2000 .

[14]  S. H. Pan,et al.  Vacuum tunneling of superconducting quasiparticles from atomically sharp scanning tunneling microscope tips , 1998 .

[15]  Y. Maeno,et al.  Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift , 1998, Nature.

[16]  H. Fukuyama,et al.  Development of a new ULT Scanning Tunneling Microscope at University of Tokyo , 2000 .

[17]  S. Heinze,et al.  Real-space imaging of two-dimensional antiferromagnetism on the atomic scale , 2000, Science.

[18]  Hamann,et al.  Theory of the scanning tunneling microscope. , 1985, Physical review. B, Condensed matter.

[19]  G. Mariotto,et al.  DYNAMIC BEHAVIOR OF A PIEZOWALKER, INERTIAL AND FRICTIONAL CONFIGURATIONS , 1999 .

[20]  Charles M. Lieber,et al.  Hexagonal Domain-Like Charge Density Wave Phase of TaS2 Determined by Scanning Tunneling Microscopy. , 1989, Science.

[21]  H. Eisaki,et al.  Interplay of magnetism and high-Tc superconductivity at individual Ni impurity atoms in Bi2Sr2CaCu2O8+δ , 2001, Nature.

[22]  H. Fukuyama,et al.  Construction of an ultra-low temperature scanning tunneling microscope , 1996 .

[23]  S. Blügel,et al.  STM measurements on the InAs(110) surface directly compared with surface electronic structure calculations , 2003 .

[24]  R. Wiesendanger,et al.  Low temperature scanning tunneling spectroscopy on InAs(110) , 2000 .

[25]  M. Jourdan,et al.  Superconductivity mediated by spin fluctuations in the heavy-fermion compound UPd2 Al3 , 1999, Nature.

[26]  R. Wiesendanger,et al.  STM study of carbon-induced reconstructions on W(110): strong evidence for a surface lattice deformation , 1995 .

[27]  J. Bardeen Tunnelling from a Many-Particle Point of View , 1961 .

[28]  R. Feenstra,et al.  Scanning tunneling microscope for low temperature, high magnetic field, and spatially resolved spectroscopy , 1987 .

[29]  D. Hamann,et al.  Theory and Application for the Scanning Tunneling Microscope , 1983 .

[30]  R. Wiesendanger,et al.  Spin-polarized scanning tunneling microscopy with antiferromagnetic probe tips. , 2002, Physical review letters.

[31]  Robinson,et al.  Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. , 1989, Physical review letters.

[32]  S. V. Kravchenko,et al.  Metallic behavior and related phenomena in two dimensions , 2000, cond-mat/0006055.

[33]  STM studies of individual Ti impurity atoms in Sr2RuO4 , 2003 .

[34]  R. Wiesendanger,et al.  A low-temperature ultrahigh vacuum scanning tunneling microscope with a split-coil magnet and a rotary motion stepper motor for high spatial resolution studies of surface magnetism , 2000 .

[35]  J. C. Davis,et al.  3He refrigerator based very low temperature scanning tunneling microscope , 1999 .

[36]  R. Wiesendanger,et al.  From quantized states to percolation: Scanning tunneling spectroscopy of a strongly disordered two-dimensional electron system , 2003 .

[37]  B. Hoogenboom,et al.  Linear and field-independent relation between vortex core state energy and gap in Bi(2)Sr(2)CaCu(2)O(8+delta). , 2001, Physical review letters.

[38]  H. Fukuyama,et al.  Construction of an ultra low temperature STM with a bottom loading mechanism , 2003 .

[39]  R. Wiesendanger,et al.  Direct comparison between potential landscape and local density of states in a disordered two-dimensional electron system. , 2002, Physical review letters.

[40]  Variable-temperature ultrahigh vacuum scanning tunneling microscope: Mechanical and electronic instrumentation , 1992 .

[41]  J. Kirschner,et al.  Step-induced frustration of antiferromagnetic order in Mn on Fe(001). , 2004, Physical review letters.

[42]  Adsorption pumping for obtaining ULT in 3He Cryostats and 3He-4He Dilution Refrigerators , 1998 .

[43]  T. Yamada,et al.  Use of voltage pulses to detect spin-polarized tunneling , 2003 .

[44]  H. Elmers,et al.  The ferromagnetic monolayer Fe(110) on W(110) , 1990 .

[45]  J. Waszczak,et al.  STM SPECTROSCOPY OF VORTEX CORES AND THE FLUX LATTICE , 1991 .

[46]  E. Plummer,et al.  Direct observation of a surface charge density wave , 1996, Nature.

[47]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[48]  Characterization of the electronic states near the centres of the Landau bands under quantum Hall conditions , 1992 .

[49]  R. Wiesendanger,et al.  Scanning tunneling spectroscopy of Fe/W(110) using iron covered probe tips , 1997 .

[50]  R. Wiesendanger,et al.  Direct Observation of Internal Spin Structure of Magnetic Vortex Cores , 2002, Science.

[51]  R. Wiesendanger,et al.  Thickness dependent magnetization states of Fe islands on W(110): From single domain to vortex and diamond patterns , 2004 .

[52]  Hudson,et al.  Atomic-scale quasi-particle scattering resonances in Bi2Sr2CaCu2O8+delta , 1999, Science.

[53]  R. Wiesendanger,et al.  An ultrahigh vacuum scanning tunneling microscope for in situ studies of thin-film growth , 1997 .

[54]  T. Matsuyama,et al.  Rashba spin splitting in inversion layers onp-type bulk InAs , 2000 .

[55]  N. Wingreen,et al.  Tunneling into a single magnetic atom: spectroscopic evidence of the kondo resonance , 1998, Science.

[56]  B. Delley,et al.  Kondo Scattering Observed at a Single Magnetic Impurity , 1998 .

[57]  C. J. Chen,et al.  Introduction to Scanning Tunneling Microscopy , 1993 .

[58]  Hideaki Takayanagi,et al.  Gate Control of Spin-Orbit Interaction in an Inverted In0 , 1997 .

[59]  D. Grundler Large Rashba splitting in InAs quantum wells due to electron wave function penetration into the barrier layers. , 2000, Physical review letters.