Isogeometric Analysis of Structural Vibrations

This paper begins with personal recollections of John H. Argyris. The geometrical spirit embodied in Argyris’s work is revived in the sequel in applying the newly developed concept of isogeometric analysis to structural vibration problems. After reviewing some fundamentals of isogeometric analysis, application is made to several structural models, including rods, thin beams, membranes, and thin plates. Rotationless beam and plate models are utilized as well as three-dimensional solid models. The concept of k-refinement is explored and shown to produce more accurate and robust results than corresponding finite elements. Through the use of nonlinear parameterization, “optical” branches of frequency spectra are eliminated for k-refined meshes. Optical branches have been identified as contributors to Gibbs phenomena in wave propagation problems and the cause of rapid degradation of higher modes in p-method finite elements. A geometrically exact model of the NASA Aluminum Testbed Cylinder is constructed and frequencies and mode shapes are computed and shown to compare favorably with experimental results.

[1]  L. Meirovitch Analytical Methods in Vibrations , 1967 .

[2]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[3]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[4]  J. Tinsley Oden,et al.  A priori error estimate for the Baumann–Oden version of the discontinuous Galerkin method , 2001 .

[5]  T. Hughes,et al.  Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics , 1978 .

[6]  C. R. Calladine,et al.  A simple class of finite elements for plate and shell problems. II: An element for thin shells, with only translational degrees of freedom , 1992 .

[7]  Johann Arbocz,et al.  Computerized buckling analysis of shells , 1985 .

[8]  A. Chopra Dynamics of Structures: A Primer , 1981 .

[9]  J. H. Argyris,et al.  Modern fuselage analysis and the elastic aircraft : basic theory , 1963 .

[10]  Eric R. Ziegel,et al.  Engineering Statistics , 2004, Technometrics.

[11]  C. R. Calladine,et al.  A simple class of finite elements for plate and shell problems. I - Elements for beams and thin flat plates. II - An element for thin shells, with only translational degrees of freedom , 1992 .

[12]  Eugenio Oñate,et al.  Rotation-free triangular plate and shell elements , 2000 .

[13]  J. H. Argyris,et al.  Energy theorems and structural analysis , 1960 .

[14]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[15]  Sandra K. Roe “Collocation” , 2006 .

[16]  L. Brillouin,et al.  Wave Propagation in Periodic Structures , 1946 .

[17]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[18]  Anil K. Chopra,et al.  Dynamics of Structures: Theory and Applications to Earthquake Engineering , 1995 .

[19]  Clifford Ambrose Truesdell An Idiot's Fugitive Essays on Science: Methods, Criticism, Training, Circumstances , 2011 .

[20]  T. L. Edwards,et al.  CUBIT mesh generation environment. Volume 1: Users manual , 1994 .

[21]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[22]  Miguel Cervera,et al.  Derivation of thin plate bending elements with one degree of freedom per node , 1993 .

[23]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[24]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[25]  David Bushnell,et al.  STRESS, STABILITY AND VIBRATION OF COMPLEX, BRANCHED SHELLS OF REVOLUTION , 1974 .

[26]  G. Backhus,et al.  J. H. Argyris and S. Kelsey, Modern Fuselage Analysis and the Elastic Aircraft, Basic Theory. 176 S. m. 189 Fig. London 1963. Butterworths. Preis geb. 95 s . , 1964 .

[27]  Isaac Fried,et al.  Finite element mass matrix lumping by numerical integration with no convergence rate loss , 1975 .

[28]  Richard S. Pappa,et al.  Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder , 2002 .

[29]  T. Hughes,et al.  An improved implicit-explicit time integration method for structural dynamics , 1989 .

[30]  Richard S. Pappa,et al.  Finite Element Model Development For Aircraft Fuselage Structures , 2000 .

[31]  Gerald Farin,et al.  NURBS: From Projective Geometry to Practical Use , 1999 .

[32]  G. G. Pope A Correlation Study of Methods of Matrix Structural Analysis. R. H. Gallagher. Pergamon Press, London. 1964. 113 pp. Diagrams. 70s. , 1964, The Journal of the Royal Aeronautical Society.

[33]  C. Truesdell The Computer: Ruin of Science and Threat to Mankind (1980/1982) , 1984 .

[34]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[35]  Richard B. Lehoucq,et al.  An Automated Multilevel Substructuring Method for Eigenspace Computation in Linear Elastodynamics , 2004, SIAM J. Sci. Comput..