Optimizing MR Scan Design for Model-Based ${T}_{1}$ , ${T}_{2}$ Estimation From Steady-State Sequences

Rapid, reliable quantification of MR relaxation parameters <inline-formula> <tex-math notation="LaTeX">$\textit{T}_{1}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\textit{T}_{2}$ </tex-math></inline-formula> is desirable for many clinical applications. Steady-state sequences such as Spoiled Gradient-Recalled Echo (SPGR) and Dual-Echo Steady-State (DESS) are fast and well-suited for relaxometry because the signals they produce are quite sensitive to <inline-formula> <tex-math notation="LaTeX">$\textit{T}_{1}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\textit{T}_{2}$ </tex-math></inline-formula> variation. However, <inline-formula> <tex-math notation="LaTeX">$T_{1}, T_{2}$ </tex-math></inline-formula> estimation with these sequences typically requires multiple scans with varied sets of acquisition parameters. This paper describes a systematic framework for selecting scan types (<italic>e.g.</italic>, combinations of SPGR and DESS scans) and optimizing their respective parameters (<italic>e.g.</italic>, flip angles and repetition times). The method is based on a Cramér-Rao Bound (CRB)-inspired min-max optimization that finds scan parameter combinations that robustly enable precise object parameter estimation. We apply this technique to optimize combinations of SPGR and DESS scans for <inline-formula> <tex-math notation="LaTeX">$T_{1}, T_{2}$ </tex-math></inline-formula> relaxometry in white matter (WM) and grey matter (GM) regions of the human brain at 3T field strength. Phantom accuracy experiments show that SPGR/DESS scan combinations are in excellent agreement with reference measurements. Phantom precision experiments show that trends in <inline-formula> <tex-math notation="LaTeX">$T_{1}, T_{2}$ </tex-math></inline-formula> pooled sample standard deviations reflect CRB-based predictions. <italic>In vivo</italic> experiments show that in WM and GM, <inline-formula> <tex-math notation="LaTeX">$\textit{T}_{1}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\textit{T}_{2}$ </tex-math></inline-formula> estimates from a pair of optimized DESS scans exhibit precision (but not necessarily accuracy) comparable to that of optimized combinations of SPGR and DESS scans. To our knowledge, <inline-formula> <tex-math notation="LaTeX">$\textit{T}_{1}$ </tex-math></inline-formula> maps from DESS acquisitions alone are new. This example application illustrates that scan optimization may help reveal new parameter mapping techniques from combinations of established pulse sequences.

[1]  Jeffrey A. Fessler,et al.  Model-based estimation of T2 maps with dual-echo steady-state MR imaging , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[2]  Oliver Bieri,et al.  Triple echo steady‐state (TESS) relaxometry , 2014, Magnetic resonance in medicine.

[3]  Daniel Brenner,et al.  MR parameter quantification with magnetization‐prepared double echo steady‐state (MP‐DESS) , 2014, Magnetic resonance in medicine.

[4]  Jeffrey A. Fessler,et al.  Fast Parallel MR Image Reconstruction via B1-Based, Adaptive Restart, Iterative Soft Thresholding Algorithms (BARISTA) , 2015, IEEE Transactions on Medical Imaging.

[5]  Elna-Marie Larsson,et al.  Relaxation times in relation to grade of malignancy and tissue necrosis in astrocytic gliomas , 1986 .

[6]  Mehmet Akçakaya,et al.  On the selection of sampling points for myocardial T1 mapping , 2015, Magnetic resonance in medicine.

[7]  M Kormano,et al.  Tissue characterization of intracranial tumors by magnetization transfer and spin‐lattice relaxation parameters in vivo , 1996, Journal of magnetic resonance imaging : JMRI.

[8]  T. Peters,et al.  Determination of optimal angles for variable nutation proton magnetic spin‐lattice, T1, and spin‐spin, T2, relaxation times measurement , 2004, Magnetic resonance in medicine.

[9]  J. Boire,et al.  T2 maximum likelihood estimation from multiple spin‐echo magnitude images , 1996, Magnetic resonance in medicine.

[10]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[11]  Jonathan A. Jones,et al.  Optimal Sampling Strategies for the Measurement of Spin–Spin Relaxation Times , 1996 .

[12]  Bob S. Hu,et al.  Fast Spiral Coronary Artery Imaging , 1992, Magnetic resonance in medicine.

[13]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Oliver Bieri,et al.  SSFP signal with finite RF pulses , 2009, Magnetic resonance in medicine.

[15]  A. Raj,et al.  Bayesian algorithm using spatial priors for multiexponential T2 relaxometry from multiecho spin echo MRI , 2012, Magnetic resonance in medicine.

[16]  H Bruder,et al.  A new steady‐state imaging sequence for simultaneous acquisition of two MR images with clearly different contrasts , 1988, Magnetic resonance in medicine.

[17]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[18]  Oded Gonen,et al.  Optimizing the precision‐per‐unit‐time of quantitative MR metrics: Examples for T1, T2, and DTI , 2007, Magnetic resonance in medicine.

[19]  A. Macovski Noise in MRI , 1996, Magnetic resonance in medicine.

[20]  O. Simonetti,et al.  T2 quantification for improved detection of myocardial edema , 2009, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[21]  M. Gyngell,et al.  The steady-state signals in short-repetition-time sequences , 1989 .

[22]  C. Ahn,et al.  High-Speed Spiral-Scan Echo Planar NMR Imaging-I , 1986, IEEE Transactions on Medical Imaging.

[23]  P L Carson,et al.  Determination of sample time for T1 measurement , 1998, Journal of magnetic resonance imaging : JMRI.

[24]  S. Patz,et al.  Analytical solution and verification of diffusion effect in SSFP , 1991, Magnetic resonance in medicine.

[25]  Kevin C. Chan,et al.  Myocardial T2 quantitation in patients with iron overload at 3 Tesla , 2009, Journal of magnetic resonance imaging : JMRI.

[26]  R. Henkelman,et al.  Practical Implementation and Optimization of One‐shot T1 imaging , 1991, Magnetic resonance in medicine.

[27]  Oliver Bieri,et al.  Rapid estimation of cartilage T2 with reduced T1 sensitivity using double echo steady state imaging , 2014, Magnetic resonance in medicine.

[28]  F. Buonanno,et al.  NMR-neuropathologic correlation in stroke. , 1987, Stroke.

[29]  B. Rutt,et al.  Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state , 2003, Magnetic resonance in medicine.

[30]  S. Holland,et al.  NMR relaxation times in the human brain at 3.0 tesla , 1999, Journal of magnetic resonance imaging : JMRI.

[31]  N J Pelc,et al.  Rapid calculation of T1 using variable flip angle gradient refocused imaging. , 1987, Magnetic resonance imaging.

[32]  Tianhu Lei Statistics of MR signals: revisited , 2007, SPIE Medical Imaging.

[33]  S. Riederer,et al.  Analysis of T2 limitations and off‐resonance effects on spatial resolution and artifacts in echo‐planar imaging , 1990, Magnetic resonance in medicine.

[34]  W. Hinshaw,et al.  Image formation by nuclear magnetic resonance: The sensitive‐point method , 1976 .

[35]  A. Evans,et al.  MRI simulation-based evaluation of image-processing and classification methods , 1999, IEEE Transactions on Medical Imaging.

[36]  Nikola Stikov,et al.  Practical medical applications of quantitative MR relaxometry , 2012, Journal of magnetic resonance imaging : JMRI.

[37]  J. Gore,et al.  Errors in the measurements of T2 using multiple‐echo MRI techniques. II. Effects of static field inhomogeneity , 1986, Magnetic resonance in medicine.

[38]  P. Gowland,et al.  Fast and accurate measurements of T1 using a multi‐readout single inversion‐recovery sequence , 1992, Magnetic resonance in medicine.

[39]  M. Bronskill,et al.  T1, T2 relaxation and magnetization transfer in tissue at 3T , 2005, Magnetic resonance in medicine.

[40]  R. Ordidge,et al.  Inversion‐recovery echo‐planar imaging (ir‐epi) at 0.5 T , 1990, Magnetic resonance in medicine.

[41]  SusanneSiemonsen,et al.  Quantitative T2 Values Predict Time From Symptom Onset in Acute Stroke Patients , 2009 .

[42]  A. MacKay,et al.  In vivo visualization of myelin water in brain by magnetic resonance , 1994, Magnetic resonance in medicine.

[43]  Oliver Bieri,et al.  Triple‐echo steady‐state T2 relaxometry of the human brain at high to ultra‐high fields , 2014, NMR in biomedicine.

[44]  Garry E Gold,et al.  Quantitative MRI techniques of cartilage composition. , 2013, Quantitative imaging in medicine and surgery.

[45]  F Langevin,et al.  Two-point method for T1 estimation with optimized gradient-echo sequence. , 1999, Magnetic resonance imaging.

[46]  Hesheng Wang,et al.  Spatially regularized T1 estimation from variable flip angles MRI. , 2012, Medical physics.

[47]  George H. Weiss,et al.  The choice of optimal parameters for measurement of spin-lattice relaxation times. I. Mathematical formulation , 1980 .

[48]  K. Scheffler A pictorial description of steady-states in rapid magnetic resonance imaging , 1999 .

[49]  S. Deoni,et al.  Transverse relaxation time (T2) mapping in the brain with off‐resonance correction using phase‐cycled steady‐state free precession imaging , 2009, Journal of magnetic resonance imaging : JMRI.

[50]  Klaus Scheffler,et al.  Rapid estimation of cartilage T2 based on double echo at steady state (DESS) with 3 Tesla , 2009, Magnetic resonance in medicine.

[51]  J. Olesen,et al.  In vivo determination of T1 and T2 in the brain of patients with severe but stable multiple sclerosis , 1988, Magnetic resonance in medicine.

[52]  R. Gill,et al.  Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .

[53]  F. Wiesinger,et al.  B1 mapping by Bloch‐Siegert shift , 2010, Magnetic resonance in medicine.

[54]  P. Basser,et al.  Linear least‐squares method for unbiased estimation of T1 from SPGR signals , 2008, Magnetic resonance in medicine.

[55]  R. Turner,et al.  Echo-planar imaging: magnetic resonance imaging in a fraction of a second. , 1991, Science.

[56]  Daniel K Sodickson,et al.  Rapid and accurate T2 mapping from multi–spin‐echo data using Bloch‐simulation‐based reconstruction , 2015, Magnetic resonance in medicine.

[57]  Richard R. Ernst,et al.  Diffusion and field‐gradient effects in NMR Fourier spectroscopy , 1974 .

[58]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[59]  Van Yperen Spoiling of Transverse Magnetization in Steady-State Sequences , 2017 .

[60]  Terry M Peters,et al.  Rapid T2 estimation with phase‐cycled variable nutation steady‐state free precession , 2004, Magnetic resonance in medicine.

[61]  H. Cramér Mathematical methods of statistics , 1947 .

[62]  T. Mosher,et al.  Cartilage MRI T2 relaxation time mapping: overview and applications. , 2004, Seminars in musculoskeletal radiology.

[63]  J. Duerk,et al.  Magnetic Resonance Fingerprinting , 2013, Nature.

[64]  Jeffrey A. Fessler,et al.  Regularized estimation of Bloch-Siegert |B1+| maps in MRI , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[65]  J. Pauly,et al.  Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [NMR imaging]. , 1991, IEEE transactions on medical imaging.

[66]  David M Higgins,et al.  Modified Look‐Locker inversion recovery (MOLLI) for high‐resolution T1 mapping of the heart , 2004, Magnetic resonance in medicine.

[67]  Mitchell A. Cooper,et al.  T2prep three‐dimensional spiral imaging with efficient whole brain coverage for myelin water quantification at 1.5 tesla , 2012, Magnetic resonance in medicine.

[68]  D. Look,et al.  Time Saving in Measurement of NMR and EPR Relaxation Times , 1970 .

[69]  Ed X. Wu,et al.  Effect of diffusion on the steady-state magnetization with pulsed field gradients , 1990 .

[70]  W. Hänicke,et al.  An analytical solution for the SSFP signal in MRI , 2003, Magnetic resonance in medicine.

[71]  Justin P. Haldar,et al.  Optimal experiment design for magnetic resonance fingerprinting , 2016, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[72]  Cheng Guan Koay,et al.  Data‐driven optimized flip angle selection for T1 estimation from spoiled gradient echo acquisitions , 2016, Magnetic resonance in medicine.

[73]  S. Riederer,et al.  Optimizing the precision in T1 relaxation estimation using limited flip angles , 1987, Magnetic resonance in medicine.

[74]  J C Gore,et al.  Errors in the measurements of T2 using multiple‐echo MRI techniques. I. Effects of radiofrequency pulse imperfections , 1986, Magnetic resonance in medicine.

[75]  H. Chernoff Locally Optimal Designs for Estimating Parameters , 1953 .