APPENDIX 4.6.B EFFICIENT COMPUTATION OF MINIMUM VARIANCE WAVEFRONT RECONSTRUCTORS USING SPARSE MATRIX TECHNIQUES
暂无分享,去创建一个
[1] B. Ellerbroek. First-order performance evaluation of adaptive optics systems for atmospheric turbulence compensatio , 1994 .
[2] Wai-Mee Ching,et al. Sparse matrix technology tools in APL , 1990 .
[3] E. P. Wallner. Optimal wave-front correction using slope measurements , 1983 .
[4] R. Noll. Zernike polynomials and atmospheric turbulence , 1976 .
[5] F. Rigaut,et al. Methods for correcting tilt anisoplanatism in laser-guide-star-based multiconjugate adaptive optics. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.
[6] R. Hudgin. Wave-front reconstruction for compensated imaging , 1977 .
[7] Byron M. Welsh,et al. Analysis of Multiconjugate Adaptive Optics , 1992, Adaptive Optics for Large Telescopes.
[8] C. Standley,et al. Adaptive optics concepts for extremely large aperture telescopes , 2000 .
[9] L M Mugnier,et al. Optimal wave-front reconstruction strategies for multiconjugate adaptive optics. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.
[10] Chester S. Gardner,et al. Effects of turbulence-induced anisoplanatism on the imaging performance of adaptive-astronomical telescopes using laser guide stars , 1991 .
[11] J. Herrmann,et al. Least-squares wave front errors of minimum norm , 1980 .
[12] Jacques M. Beckers,et al. Increasing the size of the isoplanatic patch with multiconjugate adaptive optics. , 1988 .