Biomechanics of the Semicircular Canals and Otolith Organs

[1]  William E. Brownell,et al.  Outer Hair Cell Electromotility and Otoacoustic Emissions , 1990, Ear and hearing.

[2]  R. Eatock,et al.  Adaptation in hair cells. , 2000, Annual review of neuroscience.

[3]  I. Russell,et al.  The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  M. Igarashi,et al.  Dimensional Study of the Vestibular End Organ Apparatus , 1966 .

[5]  Otoacoustic emissions, hair cells, and myosin motors. , 1997, The Journal of the Acoustical Society of America.

[6]  A. H. Clarke,et al.  Morphologische Untersuchungen zur Form der Cupula in der Bogengangsampulle , 2000, HNO.

[7]  R. Fettiplace,et al.  Efferent desensitization of auditory nerve fibre responses in the cochlea of the turtle Pseudemys scripta elegans. , 1984, The Journal of physiology.

[8]  Peter Dallos,et al.  Acetylcholine, Outer Hair Cell Electromotility, and the Cochlear Amplifier , 1997, The Journal of Neuroscience.

[9]  I S Curthoys,et al.  Semicircular duct and ampulla dimensions in cat, guinea pig and man , 1977, Journal of morphology.

[10]  P. Dallos,et al.  Development of acetylcholine-induced responses in neonatal gerbil outer hair cells. , 1999, Journal of neurophysiology.

[11]  J. O. Pickles A model for the mechanics of the stereociliar bundle on acousticolateral hair cells , 1993, Hearing Research.

[12]  M. Farina,et al.  Structural basis for mechanical transduction in the frog vestibular sensory apparatus: III. The organization of the otoconial mass , 1999, Hearing Research.

[13]  R Thalmann,et al.  The otoconia of the guinea pig utricle: internal structure, surface exposure, and interactions with the filament matrix. , 2000, Journal of structural biology.

[14]  R. Rabbitt,et al.  Influence of surgical plugging on horizontal semicircular canal mechanics and afferent response dynamics. , 1999, Journal of neurophysiology.

[15]  D. Corey,et al.  Localization of Myosin-Iβ near Both Ends of Tip Links in Frog Saccular Hair Cells , 1998, The Journal of Neuroscience.

[16]  R. Fettiplace,et al.  Efferent modulation of hair cell tuning in the cochlea of the turtle. , 1985, The Journal of physiology.

[17]  R. Rabbitt,et al.  Determinants of semicircular canal afferent response dynamics in the toadfish, Opsanus tau. , 1996, Journal of neurophysiology.

[18]  G. Matthews,et al.  Electrophysiology of synaptic vesicle cycling. , 1999, Annual review of physiology.

[19]  J. Goldberg,et al.  Structure and Function of Vestibular Nerve Fibers in the Chinchilla and Squirrel Monkey a , 1992, Annals of the New York Academy of Sciences.

[20]  I. Russell,et al.  Electrostatic interaction between stereocilia: II. Influence on the mechanical properties of the hair bundle , 2000, Hearing Research.

[21]  J R Cotton,et al.  A finite element method for mechanical response of hair cell ciliary bundles. , 2000, Journal of biomechanical engineering.

[22]  C M Oman,et al.  The influence of semicircular canal morphology on endolymph flow dynamics. An anatomically descriptive mathematical model. , 1987, Acta oto-laryngologica.

[23]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. , 1976, Journal of neurophysiology.

[24]  B. Kachar,et al.  High-resolution structure of hair-cell tip links. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A J Hudspeth,et al.  Displacement-clamp measurement of the forces exerted by gating springs in the hair bundle. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Yasuo Harada,et al.  The otolithic membrane , 1983 .

[27]  A. J. Hudspeth,et al.  How the ear's works work , 1989, Nature.

[28]  Craig C. Bader,et al.  Evoked mechanical responses of isolated cochlear outer hair cells. , 1985, Science.

[29]  R. Fettiplace,et al.  The calcium-activated potassium channels of turtle hair cells , 1995, The Journal of general physiology.

[30]  Brian Pickard,et al.  The Vestibular System and Its Diseases , 1967 .

[31]  R. Rabbitt,et al.  Physiology of the Semicircular Canals after Surgical Plugging , 2001, Annals of the New York Academy of Sciences.

[32]  D P Corey,et al.  Two mechanisms for transducer adaptation in vertebrate hair cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D H Keefe,et al.  Energy reflectance in the ear canal can exceed unity near spontaneous otoacoustic emission frequencies. , 1998, The Journal of the Acoustical Society of America.

[34]  E R Lewis,et al.  Morphological Basis for a Mechanical Linkage in Otolithic Receptor Transduction in the Frog , 1971, Science.

[35]  Bechara Kachar,et al.  Structural basis for mechanical transduction in the frog vestibular sensory apparatus: I. The otolithic membrane , 1990, Hearing Research.

[36]  A J Ricci,et al.  Active Hair Bundle Motion Linked to Fast Transducer Adaptation in Auditory Hair Cells , 2000, The Journal of Neuroscience.

[37]  J. David Dickman,et al.  Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons , 1996, Experimental Brain Research.

[38]  P A Fuchs,et al.  Efferent regulation of hair cells in the turtle cochlea , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[39]  E. Damiano,et al.  A poroelastic continuum model of the cupula partition and the response dynamics of the vestibular semicircular canal. , 1999, Journal of biomechanical engineering.

[40]  T Haslwanter,et al.  Modeling the relation between head orientations and otolith responses in humans , 2002, Hearing Research.

[41]  M. Eisen,et al.  Distal separation of chick cochlear hair cell stereocilia: analysis of contact-constraint models , 1999, Hearing Research.

[42]  A. Salt,et al.  Ionic and potential changes of the endolymphatic sac induced by endolymph volume changes , 2000, Hearing Research.

[43]  R. S. Creed,et al.  The physiology of the vestibular apparatus , 1930 .

[44]  J. Goldberg,et al.  Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. 3. Variations among units in their discharge properties. , 1971, Journal of neurophysiology.

[45]  R. Boyle,et al.  Resting discharge and response dynamics of horizontal semicircular canal afferents of the toadfish, Opsanus tau , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  P. A. Tresco,et al.  Three-dimensional reconstruction of the membranous vestibular labyrinth in the toadfish, Opsanus tau , 1998, Hearing Research.

[47]  D. M. Freeman,et al.  Deformations of the isolated mouse tectorial membrane produced by oscillatory forces , 2000, Hearing Research.

[48]  I. Russell,et al.  Electrostatic interaction between stereocilia: I. Its role in supporting the structure of the hair bundle , 2000, Hearing Research.

[49]  D. Lim Ultrastructure of the otolithic membrane and the cupula. A scanning electron microscopic observation. , 1973, Advances in oto-rhino-laryngology.

[50]  Ernst Mach,et al.  Grundlinien der Lehre von den Bewegungsempfindungen , 1967 .

[51]  D. Bagger-sjöbäck,et al.  Morphological changes of the endolymphatic sac induced by microinjection of artificial endolymph into the cochlea , 1999, Hearing Research.

[52]  A. Gummer,et al.  Reciprocal electromechanical properties of rat prestin: The motor molecule from rat outer hair cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Gustaf Retzius,et al.  Das Gehörorgan der Fische und Amphibien , 1881 .

[54]  Richard D. Rabbitt,et al.  A singular perturbation model of fluid dynamics in the vestibular semicircular canal and ampulla , 1996, Journal of Fluid Mechanics.

[55]  Richard R. Fay,et al.  Hearing and Sound Communication in Fishes , 1981, Proceedings in Life Sciences.

[56]  M. Igarashi Dimensional study of the vestibular apparatus , 1967, The Laryngoscope.

[57]  L. Minor,et al.  Symptoms and Signs in Superior Canal Dehiscence Syndrome , 2001, Annals of the New York Academy of Sciences.

[58]  R. Rabbitt,et al.  How Endolymph Pressure Modulates Semicircular Canal Primary Afferent Discharge , 2001, Annals of the New York Academy of Sciences.

[59]  G. Dohlman,et al.  The attachment of the cupulae, otolith and tectorial membranes to the sensory cell areas. , 1971, Acta oto-laryngologica.

[60]  Gustaf Retzius,et al.  Das Gehörorgan der Reptilien, der Vögel und der Säugethiere , 1884 .

[61]  D. Lim Vestibular sensory organs. A scanning electron microscopic investigation. , 1971, Archives of otolaryngology.

[62]  G. K. Yates,et al.  The low-frequency response of inner hair cells in the guinea pig cochlea: Implications for fluid coupling and resonance of the stereocilia , 1987, Hearing Research.

[63]  D. Carlström A CRYSTALLOGRAPHIC STUDY OF VERTEBRATE OTOLITHS , 1963 .

[64]  William E. Brownell,et al.  Cochlear transduction: an integrative model and review , 1982, Hearing Research.

[65]  S. M. Highstein,et al.  Relationship between Inner-Ear Fluid Pressure and Semicircular Canal Afferent Nerve Discharge , 2002, Journal of the Association for Research in Otolaryngology.

[66]  C M Oman,et al.  Dimensions of the horizontal semicircular duct, ampulla and utricle in the human. , 1987, Acta oto-laryngologica.

[67]  G. Manley Cochlear mechanisms from a phylogenetic viewpoint. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  W. Graf,et al.  A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral- and frontal-eyed animals—I. Orientation of semicircular canals and extraocular muscles , 1984, Neuroscience.

[69]  C. R. Bardeen The Labyrinth of Animals , 1907 .

[70]  E. Ferrary,et al.  Time‐related alteration of endolymph composition in an experimental model of endolymphatic hydrops , 1992, The Laryngoscope.

[71]  Peter G. Gillespie,et al.  Pulling springs to tune transduction: Adaptation by hair cells , 1994, Neuron.

[72]  J. W. McLaren,et al.  Displacement configuration of semicircular canal cupulae , 1979, Neuroscience.

[73]  H. W. Ades,et al.  Anatomical features of the auricular sensory organs , 1966 .

[74]  J. W. McLaren,et al.  Displacement of the semicircular canal cupula during sinusoidal rotation , 1979, Neuroscience.

[75]  Shu Chien,et al.  Handbook of Bioengineering , 1986 .

[76]  J. R. Holt,et al.  Mechanoelectrical Transduction and Adaptation in Hair Cells of the Mouse Utricle, a Low-Frequency Vestibular Organ , 1997, The Journal of Neuroscience.

[77]  S. Highstein,et al.  Examination of the cupula and stereocilia of the horizontal semicircular canal in the toadfish Opsanus tau , 1998, The Journal of comparative neurology.

[78]  Ian S. Curthoys,et al.  Planar relationships of the semicircular canals in rhesus and squirrel monkeys , 1985, Brain Research.

[79]  Winfried Denk,et al.  Calcium imaging of single stereocilia in hair cells: Localization of transduction channels at both ends of tip links , 1995, Neuron.

[80]  J P Carey,et al.  Eye movements in patients with superior canal dehiscence syndrome align with the abnormal canal , 2000, Neurology.

[81]  Y. T. Li,et al.  Physical properties of the labyrinthine fluids and quantification of the phenomenon of caloric stimulation , 1968 .

[82]  J. Saunders,et al.  Stiffness of hair bundles in the chick cochlea , 1992, Hearing Research.

[83]  A. Salt Regulation of Endolymphatic Fluid Volume , 2001, Annals of the New York Academy of Sciences.

[84]  J. Wersäll,et al.  Morphology of the Vestibular Sense Organ , 1974 .

[85]  V Henn,et al.  A Geometric Analysis of Semicircular Canals and Induced Activity in Their Peripheral Afferents in the Rhesus Monkey , 1988, Annals of the New York Academy of Sciences.

[86]  A V Kondrachuk,et al.  Models of the dynamics of otolithic membrane and hair cell bundle mechanics. , 2001, Journal of vestibular research : equilibrium & orientation.

[87]  R. D. Saunders,et al.  Otolith-controlled response from the first-order neurons of the labyrinth of the bullfrog (Rana catesbeiana) to changes in linear acceleration , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[88]  Robert Joseph Wolfson,et al.  Ultrastructure of the Vestibular Sense Organ , 1966 .

[89]  J R Cotton,et al.  Theoretical mechanical frequency response of the otolithic organs. , 1994, Journal of vestibular research : equilibrium & orientation.

[90]  A. Wright,et al.  Dimensions of the cochlear stereocilia in man and the guinea pig , 1984, Hearing Research.

[91]  A. Popper,et al.  Variation in lengths of ciliary bundles on hair cells along the macula of the sacculus in two species of teleost fishes. , 1984, Scanning electron microscopy.

[92]  J. Cotton,et al.  Structural Variation in Ciliary Bundles of the Posterior Semicircular Canal , 1996, Annals of the New York Academy of Sciences.

[93]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. , 1976, Journal of neurophysiology.

[94]  J. Goldberg,et al.  Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. , 1971, Journal of neurophysiology.

[95]  I. Friedmann,et al.  Ultrastructural atlas of the inner ear , 1984 .

[96]  M Igarashi,et al.  Volumetric and dimensional measurements of vestibular structures in the squirrel monkey. , 1981, Acta oto-laryngologica.

[97]  李幼升,et al.  Ph , 1989 .

[98]  R. Fay,et al.  Directional response properties of saccular afferents of the toadfish, Opsanus tau , 1997, Hearing Research.

[99]  Y. K. Liu,et al.  The fluid mechanics of the semicircular canals , 1976, Journal of Fluid Mechanics.

[100]  V. J. Wilson,et al.  Mammalian Vestibular Physiology , 1979, Springer US.

[101]  P. A. Fuchs,et al.  Voltage oscillations and ionic conductances in hair cells isolated from the alligator cochlea , 2004, Journal of Comparative Physiology A.

[102]  S M Khanna,et al.  Stiffness changes of the cupula associated with the mechanics of hair cells in the fish lateral line. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[103]  D P Corey,et al.  Mechanosensation and the DEG/ENaC Ion Channels , 1996, Science.

[104]  D. Lim Fine morphology of the otoconial membrane and its relationship to the sensory epithelium. , 1979, Scanning electron microscopy.

[105]  D. Lim,et al.  Developmental morphology of the mouse inner ear. A scanning electron microscopic observation. , 1985, Acta oto-laryngologica. Supplementum.

[106]  J. Goldberg,et al.  The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. , 1990, Journal of neurophysiology.

[107]  Richard D. Rabbitt,et al.  Directional coding of three-dimensional movements by the vestibular semicircular canals , 1999, Biological Cybernetics.

[108]  Jing Zheng,et al.  Prestin is the motor protein of cochlear outer hair cells , 2000, Nature.

[109]  M. Goodman,et al.  Variations in the ensemble of potassium currents underlying resonance in turtle hair cells. , 1996, The Journal of physiology.

[110]  B. Hess,et al.  Central versus peripheral origin of vestibuloocular reflex recovery following semicircular canal plugging in rhesus monkeys. , 2000, Journal of neurophysiology.

[111]  T. Konishi Ion and water control in cochlear endolymph. , 1982, American journal of otolaryngology.

[112]  J. W. Grant,et al.  A finite-element model of inner ear hair bundle micromechanics , 1997, Hearing Research.

[113]  E. Njeugna,et al.  Mechanics of the cupula: effects of its thickness. , 1992, Journal of vestibular research : equilibrium & orientation.

[114]  Robert L. Spilker,et al.  1991 Biomechanics Symposium , 1991 .

[115]  D. Kemp Stimulated acoustic emissions from within the human auditory system. , 1978, The Journal of the Acoustical Society of America.

[116]  D. Corey,et al.  Myosin and Adaptation by Hair Cells , 1997, Neuron.

[117]  D. M. Freeman,et al.  Equilibrium behavior of an isotropic polyelectrolyte gel model of the tectorial membrane: effect of pH 1 Preliminary versions of this work were presented earlier (Freeman et al., 1996b; Weiss and Freeman, 1996b). 1 , 1997, Hearing Research.

[118]  M. S. Estes,et al.  Physiologic characteristics of vestibular first-order canal neurons in the cat. I. Response plane determination and resting discharge characteristics. , 1975, Journal of neurophysiology.

[119]  A V Kondrachuk,et al.  Finite element modeling of the 3D otolith structure. , 2001, Journal of vestibular research : equilibrium & orientation.

[120]  Brown Ac,et al.  The Sense of Rotation and the Anatomy and Physiology of the Semicircular Canals of the Internal Ear. , 1874 .

[121]  H. Vries,et al.  The mechanics of the labyrinth otoliths. , 1950 .

[122]  P. Santi,et al.  Helical Structure of Hair Cell Stereocilia Tip Links In the Chinchilla Cochlea , 2000, Journal of the Association for Research in Otolaryngology.

[123]  Thomas F. Weiss,et al.  Hydrodynamic forces on hair bundles at high frequencies , 1990, Hearing Research.

[124]  Grant Jw A model for otolith dynamic response with a viscoelastic gel layer. , 1990 .

[125]  Christopher Platt,et al.  Fine Structure and Function of the Ear , 1981 .

[126]  D P Corey,et al.  Adaptation of mechanoelectrical transduction in hair cells of the bullfrog's sacculus , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[127]  A. Hudspeth,et al.  Identification of a 120 kd hair-bundle myosin located near stereociliary tips , 1993, Neuron.

[128]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. , 1976, Journal of neurophysiology.

[129]  Glen K. Martin,et al.  Distortion Product Emissions in Humans , 1990, The Annals of otology, rhinology & laryngology. Supplement.

[130]  W. Steinhausen Über die Beobachtung der Cupula in den Bogengangsampullen des Labyrinths des lebenden Hechts , 1933, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[131]  N. Hacohen,et al.  Regulation of tension on hair-cell transduction channels: displacement and calcium dependence , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  John A. Assad,et al.  Tip-link integrity and mechanical transduction in vertebrate hair cells , 1991, Neuron.

[133]  A J Hudspeth,et al.  Rapid, Active Hair Bundle Movements in Hair Cells from the Bullfrog’s Sacculus , 1996, The Journal of Neuroscience.

[134]  M. Goodman,et al.  Positive feedback by a potassium-selective inward rectifier enhances tuning in vertebrate hair cells. , 1996, Biophysical journal.