Rough set-based logics for multicriteria decision analysis

In this paper, we propose some decision logic languages for rule representation in rough set-based multicriteria analysis. The semantic models of these logics are data tables, each of which is comprised of a finite set of objects described by a finite set of criteria/attributes. The domains of the criteria may have ordinal properties expressing preference scales, while the domains of the attributes may not. The validity, support, and confidence of a rule are defined via its satisfaction in the data table.

[1]  Salvatore Greco,et al.  Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules , 2004, Eur. J. Oper. Res..

[2]  Wu-Chih Hu,et al.  Decision logics for knowledge representation in data mining , 2001, 25th Annual International Computer Software and Applications Conference. COMPSAC 2001.

[3]  Lech Polkowski,et al.  Rough Sets in Knowledge Discovery 2 , 1998 .

[4]  Salvatore Greco,et al.  Mining decision-rule preference model from rough approximation of preference relation , 2002, Proceedings 26th Annual International Computer Software and Applications.

[5]  S. Greco,et al.  Rough Approximation of a Preference Relation in a Pairwise Comparison Table , 1998 .

[6]  Yiyu Yao,et al.  An Analysis of Quantitative Measures Associated with Rules , 1999, PAKDD.

[7]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[8]  Marzena Kryszkiewicz,et al.  Reducing Information Systems with Uncertain Attributes , 1996, ISMIS.

[9]  Duen-Ren Liu,et al.  A Possibilistic Decision Logic with Applications , 2001, Fundam. Informaticae.

[10]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[11]  Gordon H. Huang,et al.  Application of Rough Sets to Environmental Engineering Models , 2004, Trans. Rough Sets.

[12]  Salvatore Greco,et al.  Variable Consistency Model of Dominance-Based Rough Sets Approach , 2000, Rough Sets and Current Trends in Computing.

[13]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[14]  Marzena Kryszkiewicz,et al.  Reducing Information Systems with Uncertain Real Value Attributes , 2000 .

[15]  Duen-Ren Liu,et al.  A Logical Approach to Fuzzy Data Analysis , 1999, PKDD.

[16]  D. Nauck,et al.  Fuzzy data analysis: challenges and perspectives , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[17]  S. Greco,et al.  Methodology of rough-set-based classification and sorting with hierarchical structure of attributes and criteria , 2002 .

[18]  Roman Słowiński,et al.  Extension Of The Rough Set Approach To Multicriteria Decision Support , 2000 .

[19]  Yiyu Yao,et al.  A Generalized Decision Logic in Interval-Set-Valued Information Tables , 1999, RSFDGrC.

[20]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[21]  Salvatore Greco,et al.  Rough approximation of a preference relation by dominance relations , 1999, Eur. J. Oper. Res..

[22]  Roman Słowiński,et al.  The Use of Rough Sets and Fuzzy Sets in MCDM , 1999 .

[23]  Salvatore Greco,et al.  Rough sets methodology for sorting problems in presence of multiple attributes and criteria , 2002, Eur. J. Oper. Res..

[24]  Salvatore Greco,et al.  Rough Set Analysis of Preference-Ordered Data , 2002, Rough Sets and Current Trends in Computing.

[25]  Churn-Jung Liau,et al.  A generalized decision logic language for granular computing , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[26]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[27]  Witold Lipski,et al.  On Databases with Incomplete Information , 1981, JACM.

[28]  Salvatore Greco,et al.  Rough Set Approach to Multi-Attribute Choice and Ranking Problems , 1997 .

[29]  Churn-Jung Liau Matrix Representation Of Belief States: An Algebraic Semantics For Belief Logics , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[30]  Churn-Jung Liau Belief Reasoning, Revision and Fusion by Matrix Algebra , 2004, Rough Sets and Current Trends in Computing.