An Eigenvector Algorithm with Reference Signals Using a Deflation Approach for Blind Deconvolution

We propose an eigenvector algorithm (EVA) with reference signals for blind deconvolution (BD) of multiple-input multiple-output infinite impulse response (MIMO-IIR) channels. Differently from the conventional EVAs, each output of a deconvolver is used as a reference signal, and moreover the BD can be achieved without using whitening techniques. The validity of the proposed EVA is shown comparing with our conventional EVA.

[1]  Dieter Boss,et al.  Generalized eigenvector algorithm for blind equalization , 1997, Signal Process..

[2]  Jean-Christophe Pesquet,et al.  Quadratic Higher Order Criteria for Iterative Blind Separation of a MIMO Convolutive Mixture of Sources , 2007, IEEE Transactions on Signal Processing.

[3]  Allan Kardec Barros,et al.  Independent Component Analysis and Blind Source Separation , 2007, Signal Processing.

[4]  Tetsuya Okamoto,et al.  Adaptive super-exponential algorithms for blind deconvolution of MIMO systems , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[5]  Lucas C. Parra,et al.  Blind Source Separation via Generalized Eigenvalue Decomposition , 2003, J. Mach. Learn. Res..

[6]  Driss Aboutajdine,et al.  Source separation contrasts using a reference signal , 2004, IEEE Signal Processing Letters.

[7]  Yujiro Inouye,et al.  Super-exponential algorithms for multichannel blind deconvolution , 2000, IEEE Trans. Signal Process..

[8]  Mitsuru Kawamoto,et al.  Eigenvector Algorithms for Blind Deconvolution of MIMO-IIR Systems , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[9]  Mitsuru Kawamoto,et al.  Eigenvector Algorithms Using Reference Signals , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[10]  Y. Inouye Autoregressive model fitting for multichannel time series of degenerate rank: Limit properties , 1985 .

[11]  Mitsuru Kawamoto,et al.  Robust Super-Exponential Methods for Blind Equalization of MIMO-IIR Systems , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[12]  Karl-Dirk Kammeyer,et al.  A closed-form solution to blind equalization , 1994, Signal Process..

[13]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.