Failure modes and mechanisms for rechargeable Lithium-based batteries: a state-of-the-art review

[1]  K. Zhou,et al.  Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs for high-performance lithium storage , 2018 .

[2]  Li Yang,et al.  Recent progress in conversion reaction metal oxide anodes for Li-ion batteries , 2017 .

[3]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[4]  Qi Li,et al.  Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries , 2017, Science Advances.

[5]  S. Lanceros‐Méndez,et al.  Mild hydrothermal synthesis and crystal morphology control of LiFePO4 by lithium nitrate , 2017 .

[6]  Jun Lu,et al.  State-of-the-art characterization techniques for advanced lithium-ion batteries , 2017, Nature Energy.

[7]  Sulin Zhang,et al.  Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries , 2017, npj Computational Materials.

[8]  Jianlin Li,et al.  Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries , 2016 .

[9]  Shaofan Li,et al.  A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals , 2016 .

[10]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[11]  B. Su,et al.  Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability , 2016, Scientific Reports.

[12]  P. Voorhees,et al.  Phase transformation and fracture in single LixFePO4 cathode particles: a phase-field approach to Li–ion intercalation and fracture , 2016 .

[13]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[14]  G. Cao,et al.  Understanding electrochemical potentials of cathode materials in rechargeable batteries , 2016 .

[15]  Lei Chen,et al.  Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model , 2015 .

[16]  Michael Pecht,et al.  A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries , 2015 .

[17]  W. Goddard,et al.  Annealing kinetics of electrodeposited lithium dendrites. , 2015, The Journal of chemical physics.

[18]  Da Deng,et al.  Li‐ion batteries: basics, progress, and challenges , 2015 .

[19]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[20]  W. Goddard,et al.  Thermal relaxation of lithium dendrites. , 2015, Physical chemistry chemical physics : PCCP.

[21]  Yunfang Gao,et al.  Solvothermal synthesis of uniform Li3V2(PO4)3/C nanoparticles as cathode materials for lithium ion batteries , 2015 .

[22]  Chongmin Wang,et al.  Strong kinetics-stress coupling in lithiation of Si and Ge anodes , 2015 .

[23]  Colm O'Dwyer,et al.  Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. , 2015, Physical chemistry chemical physics : PCCP.

[24]  Efthimios Kaxiras,et al.  Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF. , 2015, Physical chemistry chemical physics : PCCP.

[25]  Aniruddha Jana,et al.  Phase field kinetics of lithium electrodeposits , 2014 .

[26]  Anming Hu,et al.  Si-Based Anode Materials for Li-Ion Batteries: A Mini Review , 2014, Nano-Micro Letters.

[27]  J. Steiger,et al.  Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium , 2014 .

[28]  D. Wood,et al.  Cathode materials review , 2014 .

[29]  M. Pharr Diffusion, Deformation, and Damage in Lithium-Ion Batteries and Microelectronics , 2014 .

[30]  Huajian Gao,et al.  Microscopic model for fracture of crystalline Si nanopillars during lithiation , 2014 .

[31]  W. Goddard,et al.  Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations. , 2014, The journal of physical chemistry letters.

[32]  Yi Cui,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[33]  T. Takaki Phase-field Modeling and Simulations of Dendrite Growth , 2014 .

[34]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[35]  A. Bower,et al.  Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation , 2013, 1311.5844.

[36]  Zhigang Suo,et al.  Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries. , 2013, Nano letters.

[37]  A. V. van Duin,et al.  Mechanical properties of amorphous LixSi alloys: a reactive force field study , 2013 .

[38]  Hanqing Jiang,et al.  A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries , 2013 .

[39]  Yang Liu,et al.  Tough germanium nanoparticles under electrochemical cycling. , 2013, ACS nano.

[40]  K. Leung Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries , 2012, 1304.5976.

[41]  Zhenwei Cao,et al.  An overview of lithium-ion batteries for electric vehicles , 2012, 2012 10th International Power & Energy Conference (IPEC).

[42]  Shuru Chen,et al.  Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. , 2012, Physical chemistry chemical physics : PCCP.

[43]  M. Bazant Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[44]  M. Scarselli,et al.  Electronic and optoelectronic nano-devices based on carbon nanotubes , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  Shaofan Li,et al.  An atomistic-based interphase zone model for crystalline solids , 2012 .

[46]  F. Gao,et al.  A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries , 2012 .

[47]  W. Craig Carter,et al.  Design criteria for electrochemical shock resistant battery electrodes , 2012 .

[48]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[49]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[50]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[51]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[52]  Jian Yu Huang,et al.  Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. , 2012, Nano letters.

[53]  D. Xia,et al.  Lithium Ion Rechargeable Batteries , 2012 .

[54]  Meilin Liu,et al.  Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives , 2011 .

[55]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[56]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[57]  G. Yushin,et al.  Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films , 2011 .

[58]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[59]  Yi Cui,et al.  Anisotropic Lithium Insertion Behavior in Silicon Nanowires: Binding Energy, Diffusion Barrier, and Strain Effect , 2011 .

[60]  Shaofan Li,et al.  Meshfree simulations of spall fracture , 2011 .

[61]  Rajeswari Chandrasekaran,et al.  Analysis of Lithium Insertion/Deinsertion in a Silicon Electrode Particle at Room Temperature , 2010 .

[62]  Shaofan Li,et al.  Meshfree simulations of plugging failures in high-speed impacts , 2010 .

[63]  V. Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[64]  M. Verbrugge,et al.  Modeling diffusion-induced stress in nanowire electrode structures , 2010 .

[65]  Gang Liu,et al.  Enhanced electrochemical properties of LiFePO4 cathode for Li-ion batteries with amorphous NiP coating , 2010 .

[66]  Z. Suo,et al.  Averting cracks caused by insertion reaction in lithium–ion batteries , 2010 .

[67]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes , 2010 .

[68]  Vincent Chevrier,et al.  First Principles Studies of Disordered Lithiated Silicon , 2010 .

[69]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[70]  Jean-Marie Tarascon,et al.  Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis† , 2010 .

[71]  Shaofan Li,et al.  A multiscale cohesive zone model and simulations of fractures , 2010 .

[72]  Zechang Sun,et al.  Performance and characteristic research in LiFePO4 battery for electric vehicle applications , 2009, 2009 IEEE Vehicle Power and Propulsion Conference.

[73]  Min Gyu Kim,et al.  Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .

[74]  Li-Jun Wan,et al.  LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy‐Storage Devices , 2009, Advanced materials.

[75]  Vincent Chevrier,et al.  First Principles Model of Amorphous Silicon Lithiation , 2009 .

[76]  Yet-Ming Chiang,et al.  Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties , 2009 .

[77]  F.P. Tredeau,et al.  Performance evaluation of Lithium Cobalt cells and the suitability for use in electric vehicles , 2008, 2008 IEEE Vehicle Power and Propulsion Conference.

[78]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[79]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[80]  M. Doeff,et al.  TEM Study of Fracturing in Spherical and Plate-like LiFePO4 Particles , 2008 .

[81]  M. Demkowicz,et al.  What Can Plasticity of Amorphous Silicon Tell Us about Plasticity of Metallic Glasses? , 2008 .

[82]  Hua Cheng,et al.  Pulsed Laser Deposition and Electrochemical Characterization of LiFePO4-Ag Composite Thin Films** , 2007 .

[83]  M. Yoshio,et al.  Practical silicon-based composite anodes for lithium-ion batteries: Fundamental and technological features , 2007 .

[84]  H. Nakanishi,et al.  Crystal and electronic structure of Li15Si4 , 2007 .

[85]  T. Hufnagel,et al.  Mechanical behavior of amorphous alloys , 2007 .

[86]  W. Shyy,et al.  Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles , 2007 .

[87]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[88]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[89]  G. Ceder,et al.  Elastic properties of olivine LixFePO4 from first principles , 2006 .

[90]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[91]  Fuqian Yang Interaction between diffusion and chemical stresses , 2005 .

[92]  B. Scrosati,et al.  A Disordered Carbon as a Novel Anode Material in Lithium‐Ion Cells , 2005 .

[93]  Xiaodong Wu,et al.  Cracking causing cyclic instability of LiFePO4 cathode material , 2005 .

[94]  Jean-Marie Tarascon,et al.  Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells , 2002 .

[95]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[96]  D. Aurbach,et al.  Attempts to Improve the Behavior of Li Electrodes in Rechargeable Lithium Batteries , 2002 .

[97]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[98]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[99]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[100]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[101]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[102]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[103]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[104]  T. Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[105]  G. Nagasubramanian,et al.  Electrical and electrochemical performance characteristics of large capacity lithium-ion cells , 1999 .

[106]  B. Simon,et al.  Carbon materials for lithium-ion rechargeable batteries , 1999 .

[107]  L. Gray,et al.  Kinetically Driven Growth Instability in Stressed Solids , 1998 .

[108]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[109]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[110]  J. Yamaki,et al.  A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte , 1997 .

[111]  Robert M. Darling,et al.  Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes , 1997 .

[112]  J. Tarascon,et al.  Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4. , 1994 .

[113]  J. Tarascon,et al.  New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells , 1994 .

[114]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[115]  Aziz,et al.  The activation strain tensor: Nonhydrostatic stress effects on crystal-growth kinetics. , 1991, Physical review. B, Condensed matter.

[116]  J. Tarascon,et al.  THE SPINEL PHASE OF LIMN2O4 AS A CATHODE IN SECONDARY LITHIUM CELLS , 1991 .

[117]  Hkh Electronic properties of materials; An introduction for engineers , 1986 .

[118]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[119]  John B. Goodenough,et al.  LixCoO2 (0, 1981 .

[120]  R. Huggins,et al.  Thermodynamic investigations of ternary lithium-transition metal-oxygen cathode materials , 1980 .

[121]  R. Chianelli,et al.  Microscopic studies of transition metal chalcogenides , 1976 .

[122]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[123]  J. Besenhard,et al.  High energy density lithium cellsPart I. Electrolytes and anodes , 1976 .

[124]  J. Besenhard,et al.  High energy density lithium cells: Part II. Cathodes and complete cells , 1976 .

[125]  J. D. Eshelby The elastic energy-momentum tensor , 1975 .

[126]  J. Besenhard,et al.  Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts , 1974 .

[127]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[128]  Asma Sharafi,et al.  Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte , 2017 .

[129]  E. Hedayati,et al.  Numerical investigation of penetration in Ceramic/Aluminum targets using Smoothed particle hydrodynamics method and presenting a modified analytical model , 2017 .

[130]  J. Nairn,et al.  Simulation of Dynamic 3D Crack Propagation within the Material Point Method , 2017 .

[131]  Kim F. Ferris,et al.  Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries , 2016 .

[132]  Yi Cui,et al.  Mechanical behavior of electrochemically lithiated silicon , 2015 .

[133]  Chunbo Zhu,et al.  A review on fault mechanism and diagnosis approach for Li-Ion batteries , 2015 .

[134]  Ting Zhu,et al.  A Phase-Field Model Coupled with Large Elasto-Plastic Deformation: Application to Lithiated Silicon Electrodes , 2014 .

[135]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[136]  G. Wagner,et al.  Phase Field Modeling of Solid Electrolyte Interface Formation in Lithium Ion Batteries , 2013 .

[137]  Rahul Malik,et al.  A Critical Review of the Li Insertion Mechanisms in LiFePO4 Electrodes , 2013 .

[138]  김대규 A secondary battery , 2012 .

[139]  X. Sun,et al.  Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries , 2012 .

[140]  Huajian Gao,et al.  Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration , 2011 .

[141]  Shaofan Li,et al.  Application of Multiscale Cohesive Zone Model to Simulate Fracture in Polycrystalline Solids , 2011 .

[142]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[143]  T. P. Kumar,et al.  Materials for next-generation lithium batteries , 2008 .

[144]  Palani Balaya,et al.  Anisotropy of Electronic and Ionic Transport in LiFePO4 Single Crystals , 2007 .

[145]  D L Olmsted, R Phillips and W A Curtin Modelling diffusion in crystals under high internal stress gradients , 2005 .

[146]  M. Tuckerman,et al.  IN CLASSICAL AND QUANTUM DYNAMICS IN CONDENSED PHASE SIMULATIONS , 1998 .

[147]  山本 治,et al.  Lithium ion batteries : fundamentals and performance , 1998 .

[148]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[149]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .

[150]  J. Besenhard,et al.  Topotactic redox reactions and ion exchange of layered MoO3 bronzes , 1976 .

[151]  R. Schöllhorn,et al.  The discharge reaction mechanism of the MoO3 electrode in organic electrolytes , 1976 .

[152]  J. Besenhard The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes , 1976 .

[153]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[154]  Zhigang Suo,et al.  Lithium-assisted Plastic Deformation of Silicon Electrodes in Lithium-ion Batteries: a First-principles Theoretical Study , 2022 .