Spin transition-induced anomalies in the lower mantle: Implications for mid-mantle partial layering

[1]  Y. Ohishi,et al.  Post-Perovskite Phase Transition in MgSiO3 , 2004, Science.

[2]  A. Tsuchiyama,et al.  Low Core-Mantle Boundary Temperature Inferred from the Solidus of Pyrolite , 2014, Science.

[3]  Maxwell L. Rudolph,et al.  Viscosity jump in Earth’s mid-mantle , 2015, Science.

[4]  W. R. Peltier,et al.  Deepest mantle viscosity: Constraints from Earth rotation anomalies , 2010 .

[5]  L. Dubrovinsky,et al.  Magnesium silicate perovskite and effect of iron oxidation state on its bulk sound velocity at the conditions of the lower mantle , 2014 .

[6]  Guust Nolet,et al.  Tomographic imaging of subducted lithosphere below northwest Pacific island arcs , 1991, Nature.

[7]  J. Badro Spin Transitions in Mantle Minerals , 2014 .

[8]  D. Yuen,et al.  Viscosity undulations in the lower mantle: The dynamical role of iron spin transition , 2015 .

[9]  S. Zhong,et al.  Constraining mantle viscosity structure for a thermochemical mantle using the geoid observation , 2016 .

[10]  L. Miyagi,et al.  Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity , 2015 .

[11]  H. Watson,et al.  Predominant Intermediate-Spin Ferrous Iron in Lowermost Mantle Post-Perovskite and Perovskite , 2008 .

[12]  D. Yuen,et al.  Mid-mantle heterogeneities associated with Izanagi plate: Implications for regional mantle viscosity , 2014 .

[13]  Y. Fukao,et al.  Seismic evidence for a chemical heterogeneity in the midmantle: A strong and slightly dipping seismic reflector beneath the Mariana subduction zone , 2003 .

[14]  Renata M. Wentzcovitch,et al.  The high‐pressure electronic spin transition in iron: Potential impacts upon mantle mixing , 2011 .

[15]  McSween Hy,et al.  Evidence for Life in a Martian Meteorite , 1997 .

[16]  M. H. Shahnas,et al.  Mid-mantle heterogeneities and iron spin transition in the lower mantle: Implications for mid-mantle slab stagnation , 2017 .

[17]  A. Deuss,et al.  Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe , 2017 .

[18]  J. Mitrovica,et al.  A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data , 2004 .

[19]  R. Jeanloz,et al.  Iron spin transition in Earth's mantle. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  D. L. Anderson,et al.  The fate of slabs inferred from seismic tomography and 130 million years of subduction , 1995 .

[21]  S. Mackwell,et al.  Dislocation creep of magnesiowüstite (Mg0.8Fe0.2O) , 2001 .

[22]  Stefano de Gironcoli,et al.  Anomalous thermodynamic properties in ferropericlase throughout its spin crossover transition , 2009 .

[23]  Guillaume Fiquet,et al.  Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity , 2003, Science.

[24]  Harmen Bijwaard,et al.  Tethyan subducted slabs under India , 1999 .

[25]  Stefano de Gironcoli,et al.  Spin transition in magnesiowüstite in earth's lower mantle. , 2006, Physical review letters.

[26]  N. Schmerr,et al.  Compositional mantle layering revealed by slab stagnation at ~1000-km depth , 2015, Science Advances.

[27]  G. Jarvis,et al.  On the relative importance of mineral phase transitions and viscosity stratification in controlling the sinking rates of detached slab remnants , 2007 .

[28]  M. Richards,et al.  Large-scale mantle convection and the history of subduction , 1992, Nature.

[29]  Y. Ricard,et al.  Inferring the viscosity and the 3-D density structure of the mantle from geoid, topography and plate velocities , 1991 .

[30]  Sri Widiyantoro,et al.  Global seismic tomography: A snapshot of convection in the Earth: GSA Today , 1997 .

[31]  W. Fyfe,et al.  The possibility of d-electron coupling in olivine at high pressures , 1960 .

[32]  J. Mitrovica,et al.  Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data , 2001, Nature.

[33]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[34]  Guillaume Fiquet,et al.  Electronic Transitions in Perovskite: Possible Nonconvecting Layers in the Lower Mantle , 2004, Science.

[35]  Renata M. Wentzcovitch,et al.  Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle , 2014, Proceedings of the National Academy of Sciences.

[36]  J. Wookey,et al.  First-principles constraints on diffusion in lower-mantle minerals and a weak D′′ layer , 2010, Nature.

[37]  W. Peltier,et al.  Layered convection and the impacts of the perovskite-postperovskite phase transition on mantle dynamics under isochemical conditions , 2010 .

[38]  T. Ruedas,et al.  Pressure‐ and temperature‐dependent thermal expansivity and the effect on mantle convection and surface observables , 2002 .

[39]  T. Lay,et al.  Mineralogy of the Deep Mantle – The Post-Perovskite Phase and its Geophysical Significance , 2015 .

[40]  Sang-Heon Shim,et al.  Spin state of ferric iron in MgSiO3 perovskite and its effect on elastic properties , 2010 .

[41]  W. Spakman,et al.  Mesozoic subducted slabs under Siberia , 1999, Nature.

[42]  W. R. Peltier,et al.  The impacts of mantle phase transitions and the iron spin crossover in ferropericlase on convective mixing—is the evidence for compositional convection definitive? New results from a Yin‐Yang overset grid‐based control volume model , 2015 .

[43]  R. Hilst,et al.  Compositional stratification in the deep mantle , 1999, Science.

[44]  D. Yuen,et al.  Anomalous compressibility of ferropericlase throughout the iron spin cross-over , 2009, Proceedings of the National Academy of Sciences.

[45]  M. Gurnis,et al.  Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase , 2009 .

[46]  Satoshi Kaneshima,et al.  Seismic scatterers in the mid-lower mantle , 2016 .

[47]  G. Schubert,et al.  Unsuccessful initial search for a midmantle chemical boundary with seismic arrays , 2001 .

[48]  G. Schubert,et al.  Viscosity profile of the lower mantle , 1985 .

[49]  John C. Smith,et al.  Viscosity‐depth profile of the Earth's mantle: Effects of polymorphic phase transitions , 1977 .

[50]  P. Koumoutsakos,et al.  The fate of the slabs interacting with a density/viscosity hill in the mid-mantle , 2010 .

[51]  C. Thomas,et al.  Detecting lower mantle slabs beneath Asia and the Aleutians , 2016 .

[52]  Sang-Heon Shim,et al.  Effects of the Fe3 + spin transition on the properties of aluminous perovskite—New insights for lower-mantle seismic heterogeneities , 2011 .

[53]  Y. Meng,et al.  Spin transition and equations of state of (Mg, Fe)O solid solutions , 2007 .

[54]  A. Hofmeister,et al.  Mantle values of thermal conductivity and the geotherm from phonon lifetimes , 1999, Science.

[55]  M. Toriumi,et al.  Pressure effect of self-diffusion in periclase (MgO) by molecular dynamics , 2007 .

[56]  Xiaobo He,et al.  Oceanic crust in the mid-mantle beneath west-central Pacific subduction zones: evidence from S to P converted waveforms , 2015 .

[57]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[58]  David A. Yuen,et al.  Spawning superplumes from the midmantle: The impact of spin transitions in the mantle , 2016 .

[59]  Y. Fei,et al.  Diffusion in MgO at high pressures: Constraints on deformation mechanisms and chemical transport at the core‐mantle boundary , 2003 .

[60]  Wei Leng,et al.  Iron-spin transition controls structure and stability of LLSVPs in the lower mantle , 2015 .