Discontinuous Galerkin Approximation of the Maxwell Eigenproblem
暂无分享,去创建一个
[1] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[2] Ilaria Perugia,et al. Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.
[3] J. Schwartz,et al. Spectral theory : self adjoint operators in Hilbert space , 1963 .
[4] Shan Zhao,et al. DSC time-domain solution of Maxwell's equations , 2003 .
[5] Ilaria Perugia,et al. The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations , 2003, Math. Comput..
[6] Klaus-Jürgen Bathe,et al. On Mixed Elements for Acoustic Fluid-Structure Interactions , 1997 .
[7] JEAN DESCLOUX,et al. On spectral approximation. Part 2. Error estimates for the Galerkin method , 1978 .
[8] B. Rivière,et al. Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .
[9] Daniele Boffi,et al. Analysis of Finite Element Approximation of Evolution Problems in Mixed Form , 2004, SIAM J. Numer. Anal..
[10] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[11] Annalisa Buffa,et al. Remarks on the Discretization of Some Noncoercive Operator with Applications to Heterogeneous Maxwell Equations , 2005, SIAM J. Numer. Anal..
[12] F. Kikuchi,et al. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism , 1987 .
[13] D. Schötzau,et al. Stabilized interior penalty methods for the time-harmonic Maxwell equations , 2002 .
[14] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[15] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[16] Mark Embree,et al. The role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem , 2006 .
[17] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[18] A. Buffa,et al. Discontinuous Galerkin approximation of the Laplace eigenproblem , 2006 .
[19] J. Hesthaven,et al. High-Order Accurate Methods for Time-domain Electromagnetics , 2004 .
[20] Clint Dawson,et al. Some Extensions Of The Local Discontinuous Galerkin Method For Convection-Diffusion Equations In Mul , 1999 .
[21] A. Bermúdez,et al. Finite element vibration analysis of fluid-solid systems without spurious modes , 1995 .
[22] Endre Süli,et al. hp-Version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form. , 2002 .
[23] P. Houston,et al. Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes , 2007 .
[24] 彰 五十嵐. N. Dunford and J. T. Schwartz (with the assistance of W. G. Bade and R. G. Bartle): Linear Operators. : Part II. Spectral Theoty. Self Adjoint Operators in Hilbert Space. Interscience. 1963. X+1065+7頁, 16×23.5cm, 14,000円。 , 1964 .
[25] Chi-Wang Shu,et al. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .
[26] Gianni Gilardi,et al. Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions , 1997 .
[27] J. Oden,et al. A discontinuous hp finite element method for convection—diffusion problems , 1999 .
[28] Chi-Wang Shu,et al. Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.
[29] Martin Costabel,et al. Discrete Compactness for the hp Version of Rectangular Edge Finite Elements , 2006, SIAM J. Numer. Anal..
[30] Tosio Kato. Perturbation theory for linear operators , 1966 .
[31] J. Rappaz,et al. On spectral approximation. Part 1. The problem of convergence , 1978 .
[32] J. Hesthaven,et al. Nodal high-order methods on unstructured grids , 2002 .
[33] Alberto Valli,et al. A domain decomposition approach for heterogeneous time-harmonic Maxwell equations , 1997 .
[34] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[35] Peter Monk,et al. Discrete compactness and the approximation of Maxwell's equations in R3 , 2001, Math. Comput..
[36] J. Hesthaven,et al. High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[38] Ohannes A. Karakashian,et al. Piecewise solenoidal vector fields and the Stokes problem , 1990 .
[39] Ilaria Perugia,et al. An hp-Analysis of the Local Discontinuous Galerkin Method for Diffusion Problems , 2002, J. Sci. Comput..
[40] Jean-Claude Nédélec,et al. Éléments finis mixtes incompressibles pour l'équation de Stokes dans ℝ3 , 1982 .
[41] W. H. Reed,et al. Triangular mesh methods for the neutron transport equation , 1973 .
[42] F. Brezzi,et al. Finite dimensional approximation of nonlinear problems , 1981 .
[43] Mary F. Wheeler,et al. Compatible algorithms for coupled flow and transport , 2004 .
[44] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[45] Daniele Boffi,et al. Fortin operator and discrete compactness for edge elements , 2000, Numerische Mathematik.
[46] Ilaria Perugia,et al. Mixed Discontinuous Galerkin Approximation of the Maxwell Operator: Non-Stabilized Formulation , 2005, J. Sci. Comput..
[47] D. Boffi,et al. Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .
[48] M. Shashkov,et al. CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .
[49] Jacques Rappaz,et al. Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .
[50] Salvatore Caorsi,et al. Mathematical Modelling and Numerical Analysis Spurious-free Approximations of Electromagnetic Eigenproblems by Means of Nedelec-type Elements , 2022 .
[51] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[52] M. Costabel,et al. Singularities of Maxwell interface problems , 1999 .
[53] Salvatore Caorsi,et al. On the Convergence of Galerkin Finite Element Approximations of Electromagnetic Eigenproblems , 2000, SIAM J. Numer. Anal..
[54] Daniele Boffi,et al. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..
[55] Ilaria Perugia,et al. Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..
[56] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .