Polar forms for geometrically continuous spline curves of arbitrary degree

This paper studies geometrically continuous spline curves of arbitrary degree. Based on the concept of universal splines, we obtain geometric constructions for both the spline control Wints and for the Bezier points and give algorithms for computing locally supported basis functions and for knot insertion. The geometric constructions are based on the intersection of osculating flats. The concept of universal splines is defined in such a way that these intersections are guaranteed to exist, As a result of this development, we obtain a generalization of polar forms to geometrically continuous spline curves by intersecting osculating flats. The presented algorithms have been coded in ,Maple, and concrete examples illustrate the approach.

[1]  Gerald E. Farin Some remarks on V2-splines , 1985, Comput. Aided Geom. Des..

[2]  Remco C. Veltkamp Smooth curves and surfaces , 1994 .

[3]  Tim N. T. Goodman,et al.  Corner cutting algorithms for the Bézier representation of free form curves , 1988 .

[4]  Hans-Peter Seidel,et al.  Knot insertion from a blossoming point of view , 1988, Comput. Aided Geom. Des..

[5]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[6]  D DeRoseTony,et al.  Parametric Curves, Part Two , 1990 .

[7]  Tom Lyche,et al.  Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .

[8]  Lyle Ramshaw,et al.  Béziers and B-splines as Multiaffine Maps , 1988 .

[9]  Hartmut Prautzsch A round trip to B-splines via de Casteljau , 1989, TOGS.

[10]  Barry Joe Discrete Beta-splines , 1987, SIGGRAPH '87.

[11]  Ron Goldman,et al.  On beta-continuous functions and their application to the construction of geometrically continuous curves and surfaces , 1989 .

[12]  Ron Goldman,et al.  Algebraic aspects of geometric continuity , 1989 .

[13]  G. Farin Visually C2 cubic splines , 1982 .

[14]  Faget de Casteljau,et al.  Shape mathematics and CAD , 1986 .

[15]  P. Dierckx,et al.  Inserting new knots into beta-spline curves , 1989 .

[16]  Wolfgang Boehm Curvature continuous curves and surfaces , 1986 .

[17]  Tony DeRose,et al.  Geometric continuity, shape parameters, and geometric constructions for Catmull-Rom splines , 1988, TOGS.

[18]  Hans Hagen,et al.  Geometric spline curves , 1985, Comput. Aided Geom. Des..

[19]  A. Derose Geometric continuity: a parametrization independent measure of continuity for computer aided geometric design (curves, surfaces, splines) , 1985 .

[20]  H. Coxeter,et al.  Introduction to Geometry. , 1961 .

[21]  Brian A. Barsky,et al.  Rational continuity: parametric, geometric, and Frenet frame continuity of rational curves , 1989, TOGS.

[22]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..

[23]  Tony DeRose,et al.  A geometric characterization of parametric cubic curves , 1989, TOGS.

[24]  L. Ramshaw,et al.  Projectively invariant classes of geometric continuity for CAGD , 1989 .

[25]  Helmut Pottmann,et al.  Classification using normal curves , 1992, Other Conferences.

[26]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[27]  Paul Dierckx,et al.  Generating the Bézier points of a -spline curve , 1989, Comput. Aided Geom. Des..

[28]  Dieter Lasser,et al.  Grundlagen der geometrischen Datenverarbeitung , 1989 .

[29]  Joe D. Warren,et al.  Geometric continuity , 1991, Comput. Aided Geom. Des..

[30]  Tim N. T. Goodman,et al.  Manipulating Shape and Producing Geometuic Contnuity in ß-Spline Curves , 1986, IEEE Computer Graphics and Applications.

[31]  Nira Dyn,et al.  ON LOCALLY SUPPORTED BASIS FUNCTIONS FOR THE REPRESENTATION OF GEOMETRICALLY CONTINUOUS CURVES , 1987 .

[32]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[33]  Barry Joe Knot insertion for Beta-spline curves and surfaces , 1990, TOGS.

[34]  Tim N. T. Goodman Constructing piecewise rational curves with Frenet frame continuity , 1990, Comput. Aided Geom. Des..

[35]  B. Barsky,et al.  An Introduction to Splines for Use in Computer Graphics and Geometric Modeling , 1987 .

[36]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[37]  G. Geise,et al.  Über berührende Kegelschnitte einer ebenen Kurve , 1962 .

[38]  Lyle Ramshaw,et al.  Blossoms are polar forms , 1989, Comput. Aided Geom. Des..

[39]  Wolfgang Böhm Rational geometric splines , 1987, Comput. Aided Geom. Des..

[40]  Tony DeRose,et al.  Geometric continuity of parametric curves: three equivalent characterizations , 1989, IEEE Computer Graphics and Applications.

[41]  Brian A. Barsky,et al.  Local Control of Bias and Tension in Beta-splines , 1983, TOGS.

[42]  Barry Joe,et al.  Multiple-knot and rational cubic beta-splines , 1989, TOGS.

[43]  Barry Joe,et al.  Quartic Beta-splines , 1990, TOGS.

[44]  Hans-Peter Seidel,et al.  A new multiaffine approach to B-splines , 1989, Comput. Aided Geom. Des..

[45]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[46]  Tony DeRose,et al.  Geometric continuity of parametric curves: constructions of geometrically continuous splines , 1990, IEEE Computer Graphics and Applications.

[47]  W. Boehm Inserting New Knots into B-spline Curves , 1980 .

[48]  G. Nielson SOME PIECEWISE POLYNOMIAL ALTERNATIVES TO SPLINES UNDER TENSION , 1974 .

[49]  B. Barsky The beta-spline: a local representation based on shape parameters and fundamental geometric measures , 1981 .

[50]  Elaine Cohen A new local basis for designing with tensioned splines , 1987, TOGS.

[51]  Brian A. Barsky,et al.  Computer Graphics and Geometric Modeling Using Beta-splines , 1988, Computer Science Workbench.

[52]  J. A. Gregory Geometric continuity , 1989 .

[53]  Ron Goldman,et al.  Blossoming and knot insertion algorithms for B-spline curves , 1990, Comput. Aided Geom. Des..

[54]  Nira Dyn,et al.  Piecewise polynomial spaces and geometric continuity of curves , 1989 .