Hybrid Heuristic Algorithm for Better Energy Optimization and Resource Utilization in Cloud Computing

[1]  Xiaohui Liu,et al.  Evolutionary Multi-Objective Workflow Scheduling in Cloud , 2016, IEEE Transactions on Parallel and Distributed Systems.

[2]  Yi Gu,et al.  Energy-aware workflow scheduling and optimization in clouds using bat algorithm , 2020, Future Gener. Comput. Syst..

[3]  Helen D. Karatza,et al.  An energy-efficient, QoS-aware and cost-effective scheduling approach for real-time workflow applications in cloud computing systems utilizing DVFS and approximate computations , 2019, Future Gener. Comput. Syst..

[4]  Qingsheng Zhu,et al.  Energy and Migration Cost-Aware Dynamic Virtual Machine Consolidation in Heterogeneous Cloud Datacenters , 2019, IEEE Transactions on Services Computing.

[5]  Salim Hariri,et al.  Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous Computing , 2002, IEEE Trans. Parallel Distributed Syst..

[6]  Dang Minh Quan,et al.  T-Alloc: A practical energy efficient resource allocation algorithm for traditional data centers , 2012, Future Gener. Comput. Syst..

[7]  Mirsaeid Hosseini Shirvani,et al.  A hybrid meta-heuristic algorithm for scientific workflow scheduling in heterogeneous distributed computing systems , 2020, Eng. Appl. Artif. Intell..

[8]  Luiz André Barroso,et al.  The Case for Energy-Proportional Computing , 2007, Computer.

[9]  Sherali Zeadally,et al.  A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems , 2016, Computing.

[10]  Tiranee Achalakul,et al.  Cost optimal scheduling in IaaS for dependent workload with particle swarm optimization , 2014, The Journal of Supercomputing.

[11]  Gadadhar Sahoo,et al.  Effect of VM Selection Heuristics on Energy Consumption and SLAs During VM Migrations in Cloud Data Centers , 2017 .

[12]  Sarbjeet Singh,et al.  A review of metaheuristic scheduling techniques in cloud computing , 2015 .

[13]  G. Ram Mohana Reddy,et al.  Multi-Objective Energy Efficient Virtual Machines Allocation at the Cloud Data Center , 2019, IEEE Transactions on Services Computing.

[14]  Ritu Garg,et al.  Reliability and energy efficient workflow scheduling in cloud environment , 2019, Cluster Computing.

[15]  Muhammad Tahir,et al.  A Hybrid Algorithm for Scheduling Scientific Workflows in Cloud Computing , 2019, IEEE Access.

[16]  Mohsen Guizani,et al.  Energy-Efficient Resource Allocation and Provisioning Framework for Cloud Data Centers , 2015, IEEE Transactions on Network and Service Management.

[17]  Reihaneh Khorsand,et al.  Improved many-objective particle swarm optimization algorithm for scientific workflow scheduling in cloud computing , 2020, Comput. Ind. Eng..

[18]  Mohamed Othman,et al.  Energy-Efficient Algorithms for Dynamic Virtual Machine Consolidation in Cloud Data Centers , 2017, IEEE Access.

[19]  Prasanta K. Jana,et al.  A GSA based hybrid algorithm for bi-objective workflow scheduling in cloud computing , 2018, Future Gener. Comput. Syst..

[20]  Zhen Xiao,et al.  Dynamic Resource Allocation Using Virtual Machines for Cloud Computing Environment , 2013, IEEE Transactions on Parallel and Distributed Systems.

[21]  Bin Luo,et al.  Cost and Energy Aware Scheduling Algorithm for Scientific Workflows with Deadline Constraint in Clouds , 2018, IEEE Transactions on Services Computing.

[22]  Chan-Hyun Youn,et al.  Energy and QoS aware resource allocation for heterogeneous sustainable cloud datacenters , 2017, Opt. Switch. Netw..

[23]  Vahid Rafe,et al.  A hybrid heuristic workflow scheduling algorithm for cloud computing environments , 2015, J. Exp. Theor. Artif. Intell..

[24]  Dharmendra K. Yadav,et al.  Multi-Objective Tasks Scheduling Algorithm for Cloud Computing Throughput Optimization☆ , 2015 .

[25]  Aida A. Nasr,et al.  Energy-Efficient Hybrid Framework for Green Cloud Computing , 2020, IEEE Access.

[26]  Omprakash Kaiwartya,et al.  Energy-efficient Nature-Inspired techniques in Cloud computing datacenters , 2019, Telecommunication Systems.

[27]  Inderveer Chana,et al.  A Survey on Resource Scheduling in Cloud Computing: Issues and Challenges , 2016, Journal of Grid Computing.

[28]  Albert Y. Zomaya,et al.  A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems , 2010, Adv. Comput..

[29]  Mainak Adhikari,et al.  Multi-objective scheduling strategy for scientific workflows in cloud environment: A Firefly-based approach , 2020, Appl. Soft Comput..

[30]  Inderveer Chana,et al.  Energy-aware Virtual Machine Migration for Cloud Computing - A Firefly Optimization Approach , 2016, Journal of Grid Computing.

[31]  Enzo Baccarelli,et al.  Energy-Efficient Adaptive Resource Management for Real-Time Vehicular Cloud Services , 2019, IEEE Transactions on Cloud Computing.

[32]  Feng Xia,et al.  A survey on virtual machine migration and server consolidation frameworks for cloud data centers , 2015, J. Netw. Comput. Appl..

[33]  Rajkumar Buyya,et al.  Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing , 2012, Future Gener. Comput. Syst..

[34]  Liang Liu,et al.  A multi-objective ant colony system algorithm for virtual machine placement in cloud computing , 2013, J. Comput. Syst. Sci..