An optimal complex AR.MA model of the Chandler wobble
暂无分享,去创建一个
[1] The variation of latitude , 1940 .
[2] A. M. Walker,et al. Further Results on the Analysis of the Variation of Latitude , 1957 .
[3] Walter Munk,et al. The rotation of the earth , 1960 .
[4] D. G. Watts,et al. Spectral analysis and its applications , 1968 .
[5] William C. Davidon,et al. Variance Algorithm for Minimization , 1968, Comput. J..
[6] Low pass filter design , 1968 .
[7] H. Akaike. Statistical predictor identification , 1970 .
[8] H. Akaike. Autoregressive model fitting for control , 1971 .
[9] H. Jeffreys. Creep in the Earth and Planets (Invited Lecture) , 1972 .
[10] H. Akaike. Maximum likelihood identification of Gaussian autoregressive moving average models , 1973 .
[11] Hirotugu Akaike,et al. Maximum likelihood estimation of structural parameters from random vibration data , 1973 .
[12] H. Akaike. Markovian Representation of Stochastic Processes and Its Application to the Analysis of Autoregressive Moving Average Processes , 1974 .
[13] H. Akaike. A new look at the statistical model identification , 1974 .
[14] R. Cùrrie. Period and Qw of The Chandler Wobble , 1974 .
[15] Howell Tong. Autoregressive model fitting with noisy data by Akaike's information criterion (Corresp.) , 1975, IEEE Trans. Inf. Theory.
[16] R. Cùrrie. Period, Qp and Amplitude of the Pole Tide , 1975 .
[17] T. Ulrych,et al. Time series modeling and maximum entropy , 1976 .
[18] E. Müller,et al. Rotation of the Earth , 1977 .