Orthogonal Surfaces - A combinatorial approach

[1]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[2]  János Pach,et al.  Small sets supporting fary embeddings of planar graphs , 1988, STOC '88.

[3]  Stefan Felsner,et al.  The maximum number of edges in a graph of bounded dimension, with applications to ring theory , 1999, Discret. Math..

[4]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[5]  D. Barnette A proof of the lower bound conjecture for convex polytopes. , 1973 .

[6]  D. Eisenbud The Geometry of Syzygies: A Second Course in Commutative Algebra and Algebraic Geometry , 2004 .

[7]  William T. Trotter,et al.  The Order Dimension of Convex Polytopes , 1993, SIAM J. Discret. Math..

[8]  Xin He,et al.  Compact Visibility Representation and Straight-Line Grid Embedding of Plane Graphs , 2003, WADS.

[9]  Herbert E. Scarf,et al.  Test sets for integer programs , 1997, Math. Program..

[10]  G. Ziegler Lectures on Polytopes , 1994 .

[11]  Stefan Felsner,et al.  Schnyder Woods and Orthogonal Surfaces , 2008, Discret. Comput. Geom..

[12]  Alexandr V. Kostochka,et al.  The dimension of suborders of the Boolean lattice , 1994 .

[13]  Ezra Miller,et al.  Planar graphs as minimal resolutions of trivariate monomial ideals , 2002, Documenta Mathematica.

[14]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[15]  Stefan Felsner,et al.  Geodesic Embeddings and Planar Graphs , 2003, Order.

[16]  László Babai,et al.  Dimension and automorphism groups of lattices , 1981 .

[17]  Stefan Felsner,et al.  Geometric Graphs and Arrangements , 2004 .

[18]  William T. Trotter,et al.  The Order Dimension of Planar Maps , 1997, SIAM J. Discret. Math..

[19]  R. Stanley Combinatorics and commutative algebra , 1983 .

[20]  EZRA MILLER,et al.  Generic and Cogeneric Monomial Ideals , 2000, J. Symb. Comput..

[21]  Stefan Felsner,et al.  Posets and planar graphs , 2005, J. Graph Theory.

[22]  Stefan Felsner,et al.  Convex Drawings of Planar Graphs and the Order Dimension of 3-Polytopes , 2001, Order.

[23]  Bernd Sturmfels,et al.  Monomial Resolutions , 1996, alg-geom/9610012.

[24]  Francesco Mallegni,et al.  The Computation of Economic Equilibria , 1973 .

[25]  J. Spencer Minimal scrambling sets of simple orders , 1972 .

[26]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[27]  Serkan Hosten,et al.  The order dimension of the complete graph , 1999, Discret. Math..

[28]  D. West Introduction to Graph Theory , 1995 .

[29]  Herbert E. Scarf,et al.  The Computation of Economic Equilibria , 1974 .

[30]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[31]  R. Forman A USER'S GUIDE TO DISCRETE MORSE THEORY , 2002 .

[32]  Stefan Felsner,et al.  Convex Drawings of 3-Connected Plane Graphs , 2004, SODA '05.

[33]  W. Schnyder Planar graphs and poset dimension , 1989 .

[34]  Manoj K. Chari On discrete Morse functions and combinatorial decompositions , 2000, Discret. Math..

[35]  Hal A. Kierstead,et al.  The dimension of two levels of the Boolean lattice , 1999, Discret. Math..