The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum

We present the RAVEN (Reconstruction, Analysis and Visualization of Metabolic Networks) Toolbox: a software suite that allows for semi-automated reconstruction of genome-scale models. It makes use of published models and/or the KEGG database, coupled with extensive gap-filling and quality control features. The software suite also contains methods for visualizing simulation results and omics data, as well as a range of methods for performing simulations and analyzing the results. The software is a useful tool for system-wide data analysis in a metabolic context and for streamlined reconstruction of metabolic networks based on protein homology. The RAVEN Toolbox workflow was applied in order to reconstruct a genome-scale metabolic model for the important microbial cell factory Penicillium chrysogenum Wisconsin54-1255. The model was validated in a bibliomic study of in total 440 references, and it comprises 1471 unique biochemical reactions and 1006 ORFs. It was then used to study the roles of ATP and NADPH in the biosynthesis of penicillin, and to identify potential metabolic engineering targets for maximization of penicillin production.

[1]  Jens Nielsen,et al.  Sampling the Solution Space in Genome-Scale Metabolic Networks Reveals Transcriptional Regulation in Key Enzymes , 2010, PLoS Comput. Biol..

[2]  Alex Bateman,et al.  InterPro: An Integrated Documentation Resource for Protein Families, Domains and Functional Sites , 2002, Briefings Bioinform..

[3]  R. Elander Industrial production of beta-lactam antibiotics. , 2003, Applied microbiology and biotechnology.

[4]  Robert E. Tarjan,et al.  Space-Efficient Implementations of Graph Search Methods , 1983, TOMS.

[5]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[6]  Jens Nielsen,et al.  Use of genome‐scale metabolic models for understanding microbial physiology , 2010, FEBS letters.

[7]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[8]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[9]  Jason A. Papin,et al.  Genome-scale microbial in silico models: the constraints-based approach. , 2003, Trends in biotechnology.

[10]  J. Nielsen,et al.  Integration of metabolome data with metabolic networks reveals reporter reactions , 2006, Molecular systems biology.

[11]  Ronan M. T. Fleming,et al.  von Bertalanffy 1.0: a COBRA toolbox extension to thermodynamically constrain metabolic models , 2011, Bioinform..

[12]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[13]  J. Nielsen,et al.  Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger , 2008, Molecular systems biology.

[14]  J. Nielsen,et al.  Metabolic Control Analysis of the Penicillin Biosynthetic Pathway in a High‐Yielding Strain of Penicillium chrysogenum , 1995, Biotechnology progress.

[15]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[16]  Hugh D. Spence,et al.  Minimum information requested in the annotation of biochemical models (MIRIAM) , 2005, Nature Biotechnology.

[17]  J Villadsen,et al.  Metabolic flux distributions in Penicillium chrysogenum during fed‐batch cultivations , 1995, Biotechnology and bioengineering.

[18]  Andriy Kovalchuk,et al.  Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum , 2008, Nature Biotechnology.

[19]  S. Østergaard,et al.  Identification and purification of O -acetyl-l-serine sulphhydrylase in Penicillium chrysogenum , 1998, Applied Microbiology and Biotechnology.

[20]  R. Durbin,et al.  Pfam: A comprehensive database of protein domain families based on seed alignments , 1997, Proteins.

[21]  Antje Chang,et al.  BRENDA, enzyme data and metabolic information , 2002, Nucleic Acids Res..

[22]  J Villadsen,et al.  Modelling of the protonophoric uncoupling by phenoxyacetic acid of the plasma membrane potential of Penicillium chrysogenum. , 1998, Biotechnology and bioengineering.

[23]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[24]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[25]  Chittibabu Guda,et al.  TARGET: a new method for predicting protein subcellular localization in eukaryotes , 2005, Bioinform..

[26]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[27]  G. Stephanopoulos,et al.  Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. , 2005, Metabolic engineering.

[28]  Markus J. Herrgård,et al.  A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology , 2008, Nature Biotechnology.

[29]  Jens Nielsen,et al.  Physiological Engineering Aspects Of Penicillium Chrysogenum , 1997 .

[30]  Y. Benjamini,et al.  Controlling the false discovery rate in behavior genetics research , 2001, Behavioural Brain Research.

[31]  J. Nielsen,et al.  Uncovering transcriptional regulation of metabolism by using metabolic network topology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[33]  B. Palsson,et al.  Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies. , 2004, Biophysical journal.

[34]  R. Elander Industrial production of β-lactam antibiotics , 2003, Applied Microbiology and Biotechnology.

[35]  Hanne Jarmer,et al.  Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans , 2006, Genome Biology.

[36]  Paul N. MacDonald,et al.  Two-Hybrid Systems , 2001 .

[37]  J. Pitt The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces , 1981 .

[38]  S. Heller,et al.  An Open Standard for Chemical Structure Representation: The IUPAC Chemical Identifier , 2003 .

[39]  Intawat Nookaew,et al.  BioMet Toolbox: genome-wide analysis of metabolism , 2010, Nucleic Acids Res..

[40]  H. Jørgensen,et al.  Analysis of penicillin V biosynthesis during fed-batch cultivations with a high-yielding strain of Penicillium chrysogenum , 2004, Applied Microbiology and Biotechnology.

[41]  Paul N. MacDonald,et al.  Two-hybrid systems : methods and protocols , 2001 .

[42]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[43]  Masaru Tomita,et al.  GEM System: automatic prototyping of cell-wide metabolic pathway models from genomes , 2006, BMC Bioinformatics.

[44]  Jenn-Kang Hwang,et al.  Prediction of protein subcellular localization , 2006, Proteins.

[45]  J. Nielsen,et al.  Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes. , 2001, Biotechnology and bioengineering.

[46]  Karl Hult,et al.  The distribution of the NADPH regenerating mannitol cycle among fungal species , 1980, Archives of Microbiology.

[47]  P N McDonald Two-hybrid systems. Methods and protocols. Introduction. , 2001, Methods in molecular biology.

[48]  Natapol Pornputtapong,et al.  Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT , 2012, PLoS Comput. Biol..

[49]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[50]  S. Kain,et al.  Growth of wildtype and mutant E. coli strains in minimal media for optimal production of nucleic acids for preparing labeled nucleotides , 2010, Applied Microbiology and Biotechnology.

[51]  S. Subramaniam,et al.  pTARGET [corrected] a new method for predicting protein subcellular localization in eukaryotes. , 2005, Bioinformatics.

[52]  McDonald Pn Two-hybrid systems. Methods and protocols. Introduction. , 2001 .

[53]  J. Pinney,et al.  metaSHARK: software for automated metabolic network prediction from DNA sequence and its application to the genomes of Plasmodium falciparum and Eimeria tenella , 2005, Nucleic acids research.

[54]  N. Kikuchi,et al.  CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks , 2008, Proceedings of the IEEE.

[55]  Bas Teusink,et al.  Accelerating the reconstruction of genome-scale metabolic networks , 2006, BMC Bioinformatics.

[56]  Intawat Nookaew,et al.  The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism , 2008, BMC Syst. Biol..

[57]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[58]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[59]  Jack T Pronk,et al.  Enzymic analysis of NADPH metabolism in beta-lactam-producing Penicillium chrysogenum: presence of a mitochondrial NADPH dehydrogenase. , 2006, Metabolic engineering.

[60]  Jens Nielsen,et al.  Metabolic engineering of beta-lactam production. , 2003, Metabolic engineering.

[61]  D. Fell,et al.  Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. , 1999, Trends in biotechnology.

[62]  Wanwipa Vongsangnak,et al.  Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae , 2008, BMC Genomics.

[63]  Paul Horton,et al.  Nucleic Acids Research Advance Access published May 21, 2007 WoLF PSORT: protein localization predictor , 2007 .

[64]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[65]  F. Blattner,et al.  In silico design and adaptive evolution of Escherichia coli for production of lactic acid. , 2005, Biotechnology and bioengineering.

[66]  Jibin Sun,et al.  IdentiCS – Identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence , 2004, BMC Bioinformatics.

[67]  J. Nielsen,et al.  Industrial systems biology. , 2010, Biotechnology and bioengineering.

[68]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[69]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[70]  Jens Nielsen,et al.  Metabolic engineering of -lactam production , 2003 .