Homogenization results for elliptic problems in periodically perforated domains with mixed-type boundary conditions

The asymptotic behaviour of a class of elliptic equations with highly oscillating coefficients, in a perforated periodic domain, is analyzed. We consider, in each period, two types of holes and we impose, on their boundaries, a Signorini and, respectively, a Neumann condition. Using the periodic unfolding method, we prove that the limit problem contains two additional terms, a right-hand side term and a “strange” one.

[1]  Doina Cioranescu,et al.  The Periodic Unfolding Method in Homogenization , 2008, SIAM J. Math. Anal..

[2]  HOMOGENIZATION OF ELLIPTIC PROBLEMS IN PERFORATED DOMAINS WITH MIXED BOUNDARY CONDITIONS , 2008 .

[3]  Doina Cioranescu,et al.  The periodic unfolding method for perforated domains and Neumann sieve models , 2008 .

[4]  Doina Cioranescu,et al.  Periodic unfolding and homogenization , 2002 .

[5]  Doina Cioranescu,et al.  Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions , 2007, Asymptot. Anal..

[6]  P. Donato,et al.  Homogenization of the Stokes Problem With Non-homogeneous Slip Boundary Conditions , 1996 .

[7]  The “strange term” in the periodic homogenization for multivalued Leray–Lions operators in perforated domains , 2010 .

[8]  Haim Brezis,et al.  Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .

[9]  Anna Nagurney,et al.  Variational Inequalities , 2009, Encyclopedia of Optimization.

[10]  Doina Cioranescu,et al.  Periodic unfolding and Robin problems in perforated domains , 2006 .

[11]  Andrea Braides,et al.  Asymptotic analysis of periodically-perforated nonlinear media , 2002 .

[12]  Doina Cioranescu,et al.  Homogénéisation du problème de Neumann non homogène dans des ouverts perfores , 1988 .

[13]  C. Conca,et al.  A Generalized Strange Term in Signorini's Type Problems , 2003 .

[14]  C. Conca,et al.  Non-homogeneous Neumann problems in domains with small holes , 1988 .

[15]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[16]  Doina Cioranescu,et al.  The periodic unfolding method in perforated domains. , 2006 .

[17]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[18]  D. Onofrei New results in the multiscale analysis on perforated domains and applications , 2007 .

[19]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[20]  U. Hornung Homogenization and porous media , 1996 .