Mechanics of force propagation in TonB-dependent outer membrane transport.

For the uptake of scarce yet essential organometallic compounds, outer membrane transporters of Gram-negative bacteria work in concert with an energy-generating inner membrane complex, thus spanning the periplasmic space to drive active transport. Here, we examine the interaction of TonB, an inner membrane protein, with an outer membrane transporter based upon a recent crystal structure of a TonB-transporter complex to characterize two largely unknown steps of the transport cycle: how energy is transmitted from TonB to the transporter and how energy transduction initiates transport. Simulations of TonB in complex with BtuB reveal that force applied to TonB is transmitted to BtuB without disruption of the very small connection between the two, supporting a mechanical mode of coupling. Based on the results of different pulling simulations, we propose that the force transduction instigates a partial unfolding of the pore-occluding luminal domain of the transporter, a potential step in the transport cycle. Furthermore, analysis of the electrostatic potentials and salt bridge interactions between the two proteins during the simulations hints at involvement of electrostatic forces in long-range interaction and binding of TonB and BtuB.

[1]  K. Diederichs,et al.  Crystal Structure of a 92-Residue C-terminal Fragment of TonB from Escherichia coli Reveals Significant Conformational Changes Compared to Structures of Smaller TonB Fragments* , 2005, Journal of Biological Chemistry.

[2]  R. Kadner,et al.  Touch and go: tying TonB to transport , 2003, Molecular microbiology.

[3]  Hector H. Huang,et al.  Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module. , 2005, Journal of molecular biology.

[4]  A. Wlodawer,et al.  Crystal Structure of the Dimeric C-terminal Domain of TonB Reveals a Novel Fold* , 2001, The Journal of Biological Chemistry.

[5]  Klaus Schulten,et al.  Molecular mechanisms of cellular mechanics. , 2006, Physical chemistry chemical physics : PCCP.

[6]  Walter L Ash,et al.  Computer simulations of membrane proteins. , 2004, Biochimica et biophysica acta.

[7]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Hui Lu,et al.  The mechanical stability of ubiquitin is linkage dependent , 2003, Nature Structural Biology.

[9]  Klaus Schulten,et al.  Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Deisenhofer,et al.  The plug domain of FepA, a TonB-dependent transport protein from Escherichia coli, binds its siderophore in the absence of the transmembrane barrel domain , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P. Klebba,et al.  Evidence of Ball-and-chain Transport of Ferric Enterobactin through FepA* , 2007, Journal of Biological Chemistry.

[12]  W. Yue,et al.  Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA. , 2003, Journal of molecular biology.

[13]  F. Pattus,et al.  The Crystal Structure of the Pyoverdine Outer Membrane Receptor FpvA from Pseudomonas aeruginosa at 3.6 Å Resolution , 2005 .

[14]  K. Postle,et al.  TonB protein appears to transduce energy by shuttling between the cytoplasmic membrane and the outer membrane in Escherichia coli , 1997, Molecular microbiology.

[15]  Rama Ranganathan,et al.  Signal transduction pathway of TonB-dependent transporters , 2007, Proceedings of the National Academy of Sciences.

[16]  David P. Chimento,et al.  Substrate-induced transmembrane signaling in the cobalamin transporter BtuB , 2003, Nature Structural Biology.

[17]  H. Nikaido,et al.  Prevention of drug access to bacterial targets: permeability barriers and active efflux. , 1994, Science.

[18]  V. Braun,et al.  Mutant Analysis of the Escherichia coli FhuA Protein Reveals Sites of FhuA Activity , 2003, Journal of bacteriology.

[19]  R. Kadner Vitamin B12 transport in Escherichia coli: energy coupling between membranes , 1990, Molecular microbiology.

[20]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[21]  J. Deisenhofer,et al.  Metal Import through Microbial Membranes , 2004, Cell.

[22]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[23]  K. Schulten,et al.  Steered molecular dynamics simulations of force‐induced protein domain unfolding , 1999, Proteins.

[24]  K. Schulten,et al.  Steered molecular dynamics and mechanical functions of proteins. , 2001, Current opinion in structural biology.

[25]  R. Kadner,et al.  Nucleotide sequence of the gene for the ferrienterochelin receptor FepA in Escherichia coli. Homology among outer membrane receptors that interact with TonB. , 1986, The Journal of biological chemistry.

[26]  P. Klebba Three paradoxes of ferric enterobactin uptake. , 2003, Frontiers in bioscience : a journal and virtual library.

[27]  H. Nikaido Porins and specific diffusion channels in bacterial outer membranes. , 1994, The Journal of biological chemistry.

[28]  J. Dubochet,et al.  Cryo-Transmission Electron Microscopy of Frozen-Hydrated Sections of Escherichia coli and Pseudomonas aeruginosa , 2003, Journal of bacteriology.

[29]  Luc Moulinier,et al.  Transmembrane Signaling across the Ligand-Gated FhuA Receptor Crystal Structures of Free and Ferrichrome-Bound States Reveal Allosteric Changes , 1998, Cell.

[30]  David P. Chimento,et al.  Comparative structural analysis of TonB‐dependent outer membrane transporters: Implications for the transport cycle , 2005, Proteins.

[31]  Klaus Schulten,et al.  Mechanical strength of the titin Z1Z2-telethonin complex. , 2006, Structure.

[32]  J. Deisenhofer,et al.  Crystal structure of the outer membrane active transporter FepA from Escherichia coli , 1999, Nature Structural Biology.

[33]  D. Shultis,et al.  Outer Membrane Active Transport: Structure of the BtuB:TonB Complex , 2006, Science.

[34]  J. Deisenhofer,et al.  Structural basis of gating by the outer membrane transporter FecA. , 2002, Science.

[35]  Zaida Luthey-Schulten,et al.  MultiSeq: unifying sequence and structure data for evolutionary analysis , 2006, BMC Bioinformatics.

[36]  S. Lowen The Biophysical Journal , 1960, Nature.

[37]  David P. Chimento,et al.  The Escherichia coli outer membrane cobalamin transporter BtuB: structural analysis of calcium and substrate binding, and identification of orthologous transporters by sequence/structure conservation. , 2003, Journal of molecular biology.

[38]  Klaus Schulten,et al.  Molecular dynamics studies of the archaeal translocon. , 2006, Biophysical journal.

[39]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[40]  M. Allaire,et al.  Structure of TonB in Complex with FhuA, E. coli Outer Membrane Receptor , 2006, Science.

[41]  R. Kadner,et al.  Substrate-induced exposure of an energy-coupling motif of a membrane transporter , 2000, Nature Structural Biology.

[42]  K. Diederichs,et al.  Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. , 1998, Science.

[43]  H. Vogel,et al.  The solution structure of the C-terminal domain of TonB and interaction studies with TonB box peptides. , 2005, Journal of molecular biology.

[44]  José D Faraldo-Gómez,et al.  Molecular dynamics simulations of the bacterial outer membrane protein FhuA: a comparative study of the ferrichrome-free and bound states. , 2003, Biophysical journal.

[45]  J. Coulton,et al.  Siderophore Transport through Escherichia coli Outer Membrane Receptor FhuA with Disulfide-tethered Cork and Barrel Domains* , 2005, Journal of Biological Chemistry.

[46]  R. Kadner,et al.  Sequence Changes in the Ton Box Region of BtuB Affect Its Transport Activities and Interaction with TonB Protein , 2000, Journal of bacteriology.

[47]  R. Kadner,et al.  Site-directed disulfide bonding reveals an interaction site between energy-coupling protein TonB and BtuB, the outer membrane cobalamin transporter. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  V. Braun,et al.  Nucleotide sequence of the colicin B activity gene cba: consensus pentapeptide among TonB-dependent colicins and receptors , 1987, Journal of bacteriology.

[49]  K. Postle,et al.  In vivo evidence of TonB shuttling between the cytoplasmic and outer membrane in Escherichia coli , 2003, Molecular microbiology.

[50]  F. Pattus,et al.  Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. , 2005, Journal of molecular biology.

[51]  P K Hansma,et al.  Stepwise unfolding of titin under force-clamp atomic force microscopy. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  K. Schulten,et al.  Molecular dynamics study of unbinding of the avidin-biotin complex. , 1997, Biophysical journal.

[53]  Klaus Schulten,et al.  Molecular dynamics simulations of proteins in lipid bilayers. , 2005, Current opinion in structural biology.

[54]  Emanuele Paci,et al.  Pulling geometry defines the mechanical resistance of a β-sheet protein , 2003, Nature Structural Biology.

[55]  R. Lavery,et al.  Unraveling proteins: a molecular mechanics study. , 1999, Biophysical journal.

[56]  M. Wiener TonB-dependent outer membrane transport: going for Baroque? , 2005, Current opinion in structural biology.