Computing isolated orbifolds in weighted flag varieties

Given a weighted flag variety $w\Sigma(\mu,u)$ corresponding to chosen fixed parameters $\mu$ and $u$, we present an algorithm to compute lists of all possible projectively Gorenstein $n$-folds, having canonical weight $k$ and isolated orbifold points, appearing as weighted complete intersections in $w\Sigma(\mu,u) $ or some projective cone(s) over $w\Sigma(\mu,u)$. We apply our algorithm to compute lists of interesting classes of polarized 3-folds with isolated orbifold points in the codimension 8 weighted $G_2$ variety. We also show the existence of some families of log-terminal $\mathbb Q$-Fano 3-folds in codimension 8 by explicitly constructing them as quasilinear sections of a weighted $G_2$-variety.

[1]  Y. Kawamata On the cone of curves of algebraic varieties , 1983 .

[2]  Inverting Reid's exact plurigenera formula , 1989 .

[3]  A. Borisov Boundedness theorem for Fano log-threefolds , 1994, alg-geom/9402004.

[4]  A. Meyers Reading , 1999, Language Teaching.

[5]  M. Reid,et al.  Weighted Grassmannians , 2002, math/0206011.

[6]  M. Reid,et al.  Fano 3-folds, K3 surfaces and graded rings , 2002, math/0202092.

[7]  M. I. Qureshi,et al.  Calabi-Yau Threefolds in Weighted Flag Varieties , 2011, 1105.4282.

[8]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[9]  S. Mukai Curves, K3 Surfaces and Fano 3-folds of Genus ≤ 10 , 1988 .

[10]  M. Reid,et al.  Explicit birational geometry of 3-folds , 2000 .

[11]  A. R. Iano-Fletcher,et al.  Explicit Birational Geometry of 3-Folds: Working with weighted complete intersections , 2000 .

[12]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[13]  T. Willmore Algebraic Geometry , 1973, Nature.

[14]  M. I. Qureshi Constructing projective varieties in weighted flag varieties II , 2014, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  M. Reid,et al.  Ice cream and orbifold Riemann–Roch , 2012, 1208.0457.

[16]  S. Mukai Biregular classification of Fano 3-folds and Fano manifolds of coindex 3. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Maximilian Kreuzer,et al.  Complete classification of reflexive polyhedra in four dimensions , 2000, hep-th/0002240.

[18]  M. Reid,et al.  Fano 3-folds in codimension 4, Tom and Jerry. Part I , 2010, Compositio Mathematica.

[19]  A. Kasprzyk,et al.  Gorenstein Formats, Canonical and Calabi–Yau Threefolds , 2014, Exp. Math..

[20]  B. Szendrői,et al.  Constructing projective varieties in weighted flag varieties , 2010, 1008.1947.