A recombinant Aspergillus oryzae fungus transmitted from larvae to adults of Anopheles stephensi mosquitoes inhibits malaria parasite oocyst development

[1]  M. Jacobs-Lorena,et al.  A Genetically Modified Anti-Plasmodium Bacterium Is Harmless to the Foragers of the Stingless Bee Partamona helleri , 2021, Microbial Ecology.

[2]  S. Hoffman,et al.  Knockout of Anopheles stephensi immune gene LRIM1 by CRISPR-Cas9 reveals its unexpected role in reproduction and vector competence , 2021, PLoS pathogens.

[3]  S. Hoffman,et al.  Transient knockdown of Anopheles stephensi LRIM1 using RNAi increases Plasmodium falciparum sporozoite salivary gland infections , 2021, Malaria journal.

[4]  M. Jacobs-Lorena,et al.  Self-limiting paratransgenesis , 2020, PLoS neglected tropical diseases.

[5]  F. Tripet,et al.  The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities , 2020, Parasites & Vectors.

[6]  M. Jacobs-Lorena,et al.  Use of Microbiota to Fight Mosquito-Borne Disease , 2020, Frontiers in Genetics.

[7]  J. Powell An Evolutionary Perspective on Vector-Borne Diseases , 2019, Front. Genet..

[8]  F. Scolari,et al.  Aedes spp. and Their Microbiota: A Review , 2019, Front. Microbiol..

[9]  T. Ma,et al.  A fixation method for the optimisation of western blotting , 2019, Scientific Reports.

[10]  S. Senthil-Nathan,et al.  Aspergillus flavus (Link) toxins reduces the fitness of dengue vector Aedes aegypti (Linn.) and their non-target toxicity against aquatic predator. , 2019, Microbial pathogenesis.

[11]  J. Neufeld,et al.  Microbiota variations in Culex nigripalpus disease vector mosquito of West Nile virus and Saint Louis Encephalitis from different geographic origins , 2019, PeerJ.

[12]  D. Janies,et al.  First detection of Anopheles stephensi Liston, 1901 (Diptera: culicidae) in Ethiopia using molecular and morphological approaches. , 2018, Acta tropica.

[13]  D. Natarajan,et al.  Aspergillus terreus (Trichocomaceae): A Natural, Eco-Friendly Mycoinsecticide for Control of Malaria, Filariasis, Dengue Vectors and Its Toxicity Assessment Against an Aquatic Model Organism Artemia nauplii , 2018, Front. Pharmacol..

[14]  D. Serre,et al.  Factors shaping the gut bacterial community assembly in two main Colombian malaria vectors , 2018, Microbiome.

[15]  M. Strand Composition and functional roles of the gut microbiota in mosquitoes. , 2018, Current opinion in insect science.

[16]  Benjamin J. Krajacich,et al.  Investigation of the seasonal microbiome of Anopheles coluzzii mosquitoes in Mali , 2018, PloS one.

[17]  T. Maffeis,et al.  Combined use of the entomopathogenic fungus, Metarhizium brunneum, and the mosquito predator, Toxorhynchites brevipalpis, for control of mosquito larvae: Is this a risky biocontrol strategy? , 2018, Journal of invertebrate pathology.

[18]  P. Agre,et al.  Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria , 2017, Science.

[19]  T. Sekiya,et al.  Modified Western blotting for insulin and other diabetes-associated peptide hormones , 2017, Scientific Reports.

[20]  G. Christophides,et al.  Larval diet affects mosquito development and permissiveness to Plasmodium infection , 2016, Scientific Reports.

[21]  A. Diabaté,et al.  Paratransgenesis to control malaria vectors: a semi-field pilot study , 2016, Parasites & Vectors.

[22]  J. Neufeld,et al.  Developmental succession of the microbiome of Culex mosquitoes , 2015, BMC Microbiology.

[23]  A. Wilke,et al.  Paratransgenesis: a promising new strategy for mosquito vector control , 2015, Parasites & Vectors.

[24]  R. Christen,et al.  Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. , 2014, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[25]  Mark R. Brown,et al.  Mosquitoes rely on their gut microbiota for development , 2014, Molecular ecology.

[26]  A. Pandey,et al.  Multiple pathways for Plasmodium ookinete invasion of the mosquito midgut , 2014, Proceedings of the National Academy of Sciences.

[27]  W. Takken,et al.  Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi , 2013, Parasites & Vectors.

[28]  M. Jacobs-Lorena,et al.  Transgenic Mosquitoes Expressing a Phospholipase A2 Gene Have a Fitness Advantage When Fed Plasmodium falciparum-Infected Blood , 2013, PloS one.

[29]  Sibao Wang,et al.  Genetic approaches to interfere with malaria transmission by vector mosquitoes. , 2013, Trends in biotechnology.

[30]  M. Oshaghi,et al.  Escherichia coli expressing a green fluorescent protein (GFP) in Anopheles stephensi: a preliminary model for paratransgenesis , 2013, Symbiosis.

[31]  A. Apte-Deshpande,et al.  Serratia odorifera a Midgut Inhabitant of Aedes aegypti Mosquito Enhances Its Susceptibility to Dengue-2 Virus , 2012, PloS one.

[32]  A. Ghosh,et al.  Fighting malaria with engineered symbiotic bacteria from vector mosquitoes , 2012, Proceedings of the National Academy of Sciences.

[33]  H. Shahbazkia,et al.  Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection , 2012, PLoS pathogens.

[34]  I. Coppens,et al.  Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut , 2011, Proceedings of the National Academy of Sciences.

[35]  Ying Wang,et al.  Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya , 2011, PloS one.

[36]  J. Rasgon Using infections to fight infections: paratransgenic fungi can block malaria transmission in mosquitoes. , 2011, Future microbiology.

[37]  M. Forsman,et al.  Transstadial Transmission of Francisella tularensis holarctica in Mosquitoes, Sweden , 2011, Emerging infectious diseases.

[38]  Angray S. Kang,et al.  Development of Transgenic Fungi That Kill Human Malaria Parasites in Mosquitoes , 2011, Science.

[39]  D. Daffonchio,et al.  Mosquito-Bacteria Symbiosis: The Case of Anopheles gambiae and Asaia , 2010, Microbial Ecology.

[40]  W. Takken,et al.  Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi , 2010, Malaria Journal.

[41]  R. Bhatnagar,et al.  Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector , 2009, BMC Microbiology.

[42]  D. Daffonchio,et al.  Paternal transmission of symbiotic bacteria in malaria vectors , 2008, Current Biology.

[43]  A. Borg-Karlson,et al.  Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. , 2008, Acta tropica.

[44]  Y. Vodovotz,et al.  Plasmodium development in the mosquito: biology bottlenecks and opportunities for mathematical modeling. , 2008, Trends in parasitology.

[45]  Jason L. Rasgon,et al.  Viral Paratransgenesis in the Malaria Vector Anopheles gambiae , 2008, PLoS pathogens.

[46]  Thomas D. Schmittgen,et al.  Analyzing real-time PCR data by the comparative CT method , 2008, Nature Protocols.

[47]  Yuliang Wu,et al.  Detecting protein–protein interactions by far western blotting , 2007, Nature Protocols.

[48]  D. Corona,et al.  A Protein Nuclear Extract from D. melanogaster Larval Tissues , 2007, Fly.

[49]  L. Kramer,et al.  Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector , 2007, Proceedings of the National Academy of Sciences.

[50]  David Lampe,et al.  Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. , 2007, International journal for parasitology.

[51]  A. Read,et al.  Can fungal biopesticides control malaria? , 2007, Nature Reviews Microbiology.

[52]  J. Lindh,et al.  Re-introducing bacteria in mosquitoes--a method for determination of mosquito feeding preferences based on coloured sugar solutions. , 2006, Acta tropica.

[53]  L. Kruglyak,et al.  Natural Malaria Infection in Anopheles gambiae Is Regulated by a Single Genomic Control Region , 2006, Science.

[54]  M. Jacobs-Lorena,et al.  Entomopathogenic fungi as biological insecticides to control malaria. , 2006, Trends in parasitology.

[55]  K. Isono,et al.  Genome sequencing and analysis of Aspergillus oryzae , 2005, Nature.

[56]  M. Riehle,et al.  Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. , 2005, Insect biochemistry and molecular biology.

[57]  D. Sim,et al.  Fungal Pathogen Reduces Potential for Malaria Transmission , 2005, Science.

[58]  M. Jacobs-Lorena,et al.  Mosquito midgut barriers to malaria parasite development. , 2004, Insect biochemistry and molecular biology.

[59]  Willem Takken,et al.  Entomopathogenic fungi for mosquito control: A review , 2004, Journal of insect science.

[60]  Y. Shouche,et al.  Studies on cultured and uncultured microbiota of wild culex quinquefasciatus mosquito midgut based on 16s ribosomal RNA gene analysis. , 2004, The American journal of tropical medicine and hygiene.

[61]  D. Silverman,et al.  Alkalization of larval mosquito midgut and the role of carbonic anhydrase in different species of mosquitoes. , 2004, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[62]  K. Zerres,et al.  Determination of SMN1 and SMN2 copy number using TaqMan™ technology , 2003, Human mutation.

[63]  T. Wienker,et al.  Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. , 2002, American journal of human genetics.

[64]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[65]  M. Jacobs-Lorena,et al.  Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J. Beier,et al.  Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. , 1996, The American journal of tropical medicine and hygiene.

[67]  M. Turell,et al.  Transmission of Rift Valley fever virus by adult mosquitoes after ingestion of virus as larvae. , 1990, The American journal of tropical medicine and hygiene.

[68]  R. Novak,et al.  Thorsellia anophelis is the dominant bacterium in a Kenyan population of adult Anopheles gambiae mosquitoes , 2008, The ISME Journal.

[69]  K. Lerdthusnee,et al.  Meconial Peritrophic Membranes and the Fate of Midgut Bacteria During Mosquito (Diptera: Culicidae) Metamorphosis , 2001, Journal of medical entomology.