Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials

Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.

[1]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[2]  D. Blackstock Fundamentals of Physical Acoustics , 2000 .

[3]  Mathias Fink,et al.  Wave propagation control at the deep subwavelength scale in metamaterials , 2012, Nature Physics.

[4]  Jie Yao,et al.  Three-dimensional nanometer-scale optical cavities of indefinite medium , 2011, Proceedings of the National Academy of Sciences.

[5]  Petra Holtzmann Directed Sonar Sensing For Mobile Robot Navigation , 2016 .

[6]  Xuefeng Zhu,et al.  Acoustic rainbow trapping , 2013, Scientific Reports.

[7]  Zongfu Yu,et al.  Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array , 2009, OPTO.

[8]  Chunyin Qiu,et al.  Metamaterial with simultaneously negative bulk modulus and mass density. , 2007, Physical review letters.

[9]  Huanyang Chen,et al.  Acoustic cloaking in three dimensions using acoustic metamaterials , 2007 .

[10]  S. Cummer,et al.  One path to acoustic cloaking , 2007 .

[11]  Karl Grosh,et al.  Microengineered hydromechanical cochlear model. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Thomas L. Szabo,et al.  Diagnostic Ultrasound Imaging: Inside Out , 2004 .

[13]  M. Sheplak,et al.  Piezoresistive Microphone Design Pareto Optimization: Tradeoff Between Sensitivity and Noise Floor , 2003, Journal of Microelectromechanical Systems.

[14]  Steven A Cummer,et al.  Non-reciprocal and highly nonlinear active acoustic metamaterials , 2014, Nature Communications.

[15]  C. Burrus,et al.  Array Signal Processing , 1989 .

[16]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[17]  Srinivas Tadigadapa,et al.  Piezoelectric MEMS sensors: state-of-the-art and perspectives , 2009 .

[18]  Richard R. Fay,et al.  Sound source localization , 2005 .

[19]  Margaret King,et al.  State of the art and perspectives , 2004, Machine Translation.

[20]  J. Zi,et al.  Negative birefraction of acoustic waves in a sonic crystal. , 2007, Nature materials.

[21]  P. Sheng,et al.  Dark acoustic metamaterials as super absorbers for low-frequency sound , 2012, Nature Communications.

[22]  Brian H. Houston,et al.  Miniature, high performance, low-cost fiber optic microphone , 2005 .

[23]  Haijun Liu,et al.  Understanding and mimicking the dual optimality of the fly ear , 2013, Scientific reports.

[24]  Daniel R. Raichel The science and applications of acoustics , 2000 .

[25]  N. Fang,et al.  Ultrasonic metamaterials with negative modulus , 2006, Nature materials.

[26]  B. Liang,et al.  An acoustic rectifier. , 2010, Nature materials.

[27]  Bin Liu,et al.  A new measurement microphone based on MEMS technology , 2003 .

[28]  R. Fleury,et al.  Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator , 2014, Science.

[29]  T. P. Martin,et al.  Sonic gradient index lens for aqueous applications , 2010, 1006.3582.

[30]  S. Singh,et al.  The WHOI micro-modem: an acoustic communications and navigation system for multiple platforms , 2005, Proceedings of OCEANS 2005 MTS/IEEE.

[31]  F. J. García de abajo,et al.  Anisotropic metamaterials for full control of acoustic waves. , 2012, Physical review letters.

[32]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[33]  Chunguang Xia,et al.  Broadband acoustic cloak for ultrasound waves. , 2010, Physical review letters.

[34]  V. M. García-Chocano,et al.  Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. , 2013, Physical review letters.

[35]  B. Balachandran,et al.  Acoustic Measurements Using a Fiber Optic Sensor System , 2003 .

[36]  Zhengyou Liu,et al.  High refractive-index sonic material based on periodic subwavelength structure , 2007 .

[37]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[38]  Kosmas L. Tsakmakidis,et al.  ‘Trapped rainbow’ storage of light in metamaterials , 2007, Nature.

[39]  Yuri S. Kivshar,et al.  Correction: Corrigendum: Hyperbolic metamaterials , 2013, Nature Photonics.

[40]  Bernhard R. Tittmann,et al.  Design of acoustic beam aperture modifier using gradient-index phononic crystals , 2010 .

[41]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[42]  Bin Liang,et al.  Acoustic cloaking by a superlens with single-negative materials. , 2011, Physical review letters.

[43]  Jie Yao,et al.  Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws , 2012, Nature Photonics.

[44]  Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[45]  R. Esenaliev,et al.  Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors , 1999 .

[46]  Keith Worden,et al.  An introduction to structural health monitoring , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  Jensen Li,et al.  Extreme acoustic metamaterial by coiling up space. , 2012, Physical review letters.

[48]  Xiaobo Yin,et al.  A holey-structured metamaterial for acoustic deep-subwavelength imaging , 2011 .

[49]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[50]  Yuri S. Kivshar,et al.  Microscopic model of Purcell enhancement in hyperbolic metamaterials , 2012, 1205.3955.

[51]  J. Willis,et al.  On cloaking for elasticity and physical equations with a transformation invariant form , 2006 .

[52]  Xiaobo Yin,et al.  Experimental demonstration of an acoustic magnifying hyperlens. , 2009, Nature materials.

[53]  R. Goode,et al.  Sound Pressure Gain Produced by the Human Middle Ear , 1995, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[54]  N. Fang,et al.  Focusing ultrasound with an acoustic metamaterial network. , 2009, Physical review letters.

[55]  Daniel Torrent,et al.  Sound focusing by gradient index sonic lenses , 2010, 1006.2701.

[56]  Prabhakar S. Naidu,et al.  Sensor Array Signal Processing , 2000 .

[57]  Harald Giessen,et al.  3D optical Yagi-Uda nanoantenna array , 2010 .

[58]  R. Craster,et al.  Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking , 2013 .