Multichannel Boron Doped Nanocrystalline Diamond Ultramicroelectrode Arrays: Design, Fabrication and Characterization

We report on the fabrication and characterization of an 8 × 8 multichannel Boron Doped Diamond (BDD) ultramicro-electrode array (UMEA). The device combines both the assets of microelectrodes, resulting from conditions in mass transport from the bulk solution toward the electrode, and of BDD's remarkable intrinsic electrochemical properties. The UMEAs were fabricated using an original approach relying on the selective growth of diamond over pre-processed 4 inches silicon substrates. The prepared UMEAs were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results demonstrated that the electrodes have exhibited a very fast electrode transfer rate (k0) up to 0.05 cm·s−1 (in a fast redox couple) and on average, a steady state limiting current (in a 0.5 M potassium chloride aqueous solution containing 1 mM Fe(CN)64− ion at 100 mV·s−1) of 1.8 nA. The UMEAs are targeted for electrophysiological as well as analytical applications.

[1]  M Bove,et al.  An array of Pt-tip microelectrodes for extracellular monitoring of activity of brain slices. , 1999, Biosensors & bioelectronics.

[2]  Giacomo Cerisola,et al.  Application of diamond electrodes to electrochemical processes , 2005 .

[3]  A. Pasquarelli,et al.  Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells. , 2010, Biosensors & bioelectronics.

[4]  Yoshiyuki Show,et al.  Electrochemical performance of diamond thin-film electrodes from different commercial sources. , 2004, Analytical chemistry.

[5]  B. McDuffie,et al.  Diffusion coefficients of ferri- and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry , 1970 .

[6]  A. B. Bonds,et al.  Diamond-derived microelectrodes array for electrochemical analysis , 2004 .

[7]  Jian Wang,et al.  Conductive diamond thin-films in electrochemistry , 2003 .

[8]  David E. Cliffel,et al.  Diamond-derived ultramicroelectrodes designed for electrochemical analysis and bioanalyte sensing , 2008 .

[9]  M. Chiappalone,et al.  Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for pharmacological applications. , 2003, Biosensors & bioelectronics.

[10]  Michele Dipalo,et al.  Transparent microelectrode array in diamond technology , 2009, 2009 IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering.

[11]  Philippe Bergonzo,et al.  Enhanced control of diamond nanoparticle seeding using a polymer matrix , 2009 .

[12]  Han-Qing Yu,et al.  Measurement of dissolved oxygen and its diffusivity in aerobic granules using a lithographically-fabricated microelectrode array. , 2009, Environmental science & technology.

[13]  Hongjie Dai,et al.  Neural stimulation with a carbon nanotube microelectrode array. , 2006, Nano letters.

[14]  T. P. Ma,et al.  Making Silicon Nitride Film a Viable Gate Dielectric , 1998 .

[15]  Greg M. Swain,et al.  The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes , 1993 .

[16]  Gregory T. A. Kovacs,et al.  Iridium-Based Ultramicroelectrode Array Fabricated by Microlithography , 1994 .

[17]  David C. Martin,et al.  Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays , 2005, Experimental Neurology.

[18]  Jinfang Zhi,et al.  Fabrication and electrochemical properties of boron-doped diamond film–gold nanoparticle array hybrid electrode , 2007 .

[19]  Richard G. Compton,et al.  Measuring the size distribution of microelectrodes in an array , 2008 .

[20]  C. A. Zorman,et al.  Diamond-on-Polymer Microelectrode Arrays Fabricated Using a Chemical Release Transfer Process , 2011, Journal of Microelectromechanical Systems.

[21]  Kazuhito Hashimoto,et al.  Electrochemical Behavior of Highly Conductive Boron‐Doped Diamond Electrodes for Oxygen Reduction in Alkaline Solution , 1998 .

[22]  P. Unwin,et al.  Impact of grain-dependent boron uptake on the electrochemical and electrical properties of polycrystalline boron doped diamond electrodes. , 2006, The journal of physical chemistry. B.

[23]  W. Heineman,et al.  Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay. , 1993, Analytical chemistry.

[24]  Greg M. Swain,et al.  Fabrication, characterization, and application of a diamond microelectrode for electrochemical measurement of norepinephrine release from the sympathetic nervous system , 2006 .

[25]  C. G. Williams,et al.  Examination of the spatially heterogeneous electroactivity of boron-doped diamond microarray electrodes. , 2006, Analytical chemistry.

[26]  Li Jiang,et al.  All-diamond microelectrode array device. , 2005, Analytical chemistry.

[27]  S. Kitazawa,et al.  Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. , 2007, Analytical chemistry.

[28]  Li Jiang,et al.  Electroanalytical applications of boron-doped diamond microelectrode arrays. , 2006, Talanta.

[29]  Pascal Mailley,et al.  New one step functionalization of polycrystalline diamond films using amine derivatives , 2010 .

[30]  R. Mark Wightman,et al.  Flow rate independent amperometric cell , 1982 .

[31]  Michele Dipalo,et al.  Fabrication of a NCD microelectrode array for amperometric detection with micrometer spatial resolution , 2011 .

[32]  Eleni Bitziou,et al.  Fluorescence confocal laser scanning microscopy as a probe of pH gradients in electrode reactions and surface activity. , 2005, Analytical chemistry.

[33]  Francisco del Monte,et al.  Multiwall carbon nanotube scaffolds for tissue engineering purposes. , 2008, Biomaterials.

[34]  Tsutomu Horiuchi,et al.  Development of Nanoscale Interdigitated Array Electrode as Electrochemical Sensor Platform for Highly Sensitive Detection of Biomolecules , 2008 .

[35]  Xu,et al.  Standard electrochemical behavior of high-quality, boron-doped polycrystalline diamond thin-film electrodes , 2000, Analytical chemistry.

[36]  William R. Heineman,et al.  A nanotube array immunosensor for direct electrochemical detection of antigen–antibody binding , 2007 .

[37]  Riedel,et al.  Origin of surface conductivity in diamond , 2000, Physical review letters.

[38]  Christoph E. Nebel,et al.  Alkene/diamond liquid/solid interface characterization using internal photoemission spectroscopy. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[39]  Pascal Mailley,et al.  High reactivity and stability of diamond electrodes: The influence of the B‐doping concentration , 2009 .

[40]  Gaelle Lissorgues,et al.  3D shaped mechanically flexible diamond microelectrode arrays for eye implant applications: The MEDINAS project , 2011 .

[41]  W. Kutner,et al.  Microelectrodes. Definitions, characterization, and applications (Technical report) , 2000 .

[42]  É. Mahé,et al.  Peroxodisulfate generation on boron-doped diamond microelectrodes array and detection by scanning electrochemical microscopy , 2010 .

[43]  Kenzo Maehashi,et al.  Fabrication of new single-walled carbon nanotubes microelectrode for electrochemical sensors application. , 2012, Talanta.

[44]  Werner Haenni,et al.  Boron-doped diamond electrodes and microelectrode-arrays for the measurement of sulfate and peroxodisulfate , 2004 .

[45]  Hang Shi,et al.  Studies of activated carbons used in double-layer capacitors , 1998 .

[46]  Christian Amatore,et al.  MICROELECTRODES. DEFINITIONS, CHARACTERIZATION, AND APPLICATIONS , 2000 .

[47]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[48]  Akira Fujishima,et al.  Application of diamond microelectrodes for end-column electrochemical detection in capillary electrophoresis. , 2003, Analytical chemistry.

[49]  Jun Li,et al.  Characterization of carbon nanofiber electrode arrays using electrochemical impedance spectroscopy: effect of scaling down electrode size. , 2010, ACS nano.

[50]  Julie V. Macpherson,et al.  Electrochemical impedance spectroscopy at single-walled carbon nanotube network ultramicroelectrodes , 2009 .

[51]  James D. Weiland,et al.  In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes , 2002, IEEE Transactions on Biomedical Engineering.