Remote-controlled quantum computing by quantum entanglement.

Quantum entanglement enables measurement on one party to affect the other's state. Based on this peculiar feature, we propose a model of remote-controlled quantum computing and design an optical scheme to realize this model for a single qubit. As an experimental demonstration of this scheme, we further implement three Pauli operators, Hardmard gate, phase gate, and π/8 gate. The minimal fidelity obtained by quantum process tomography reaches 82%. Besides, as a potential application, our model contributes to secure remote quantum information processing.

[1]  Tomoyuki Morimae,et al.  Efficient universal blind quantum computation. , 2013, Physical review letters.

[2]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[3]  Jian-Wei Pan,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[4]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[5]  Hsin-Pin Lo,et al.  Beamlike photon pairs entangled by a 2x2 fiber , 2011 .

[6]  Xiongfeng Ma,et al.  Experimental Blind Quantum Computing for a Classical Client. , 2017, Physical review letters.

[7]  Emanuel Knill,et al.  Quantum gate teleportation between separated qubits in a trapped-ion processor , 2019, Science.

[8]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[9]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[10]  Y. Nambu,et al.  Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses , 2002 .

[11]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[12]  Liang Jiang,et al.  Deterministic teleportation of a quantum gate between two logical qubits , 2018, Nature.

[13]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Guang-Can Guo,et al.  Experimental Greenberger-Horne-Zeilinger-Type Six-Photon Quantum Nonlocality. , 2015, Physical review letters.

[15]  Xiaogang Qiang,et al.  Quantum processing by remote quantum control , 2016, 1606.06131.

[16]  Xiang Fu,et al.  General-Purpose Quantum Circuit Simulator with Projected Entangled-Pair States and the Quantum Supremacy Frontier. , 2019, Physical review letters.

[17]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[18]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[19]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[20]  Joseph F Fitzsimons,et al.  Iterated Gate Teleportation and Blind Quantum Computation. , 2015, Physical review letters.

[21]  William J Munro,et al.  Quantum teleportation of optical quantum gates. , 2003, Physical review letters.

[22]  I. Chuang,et al.  Programmable Quantum Gate Arrays , 1997, quant-ph/9703032.

[23]  Guang-Can Guo,et al.  Experimental teleportation of a quantum controlled-NOT gate. , 2004, Physical review letters.

[24]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[25]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[26]  J. Eisert,et al.  Optimal local implementation of nonlocal quantum gates , 2000 .

[27]  Andrew M. Childs Secure assisted quantum computation , 2001, Quantum Inf. Comput..

[28]  Radhika Rangarajan,et al.  Optimizing type-I polarization-entangled photons. , 2009, Optics express.

[29]  Louis Salvail,et al.  BLIND QUANTUM COMPUTATION , 2003 .

[30]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[31]  Fu-Guo Deng,et al.  Quantum hyperentanglement and its applications in quantum information processing. , 2016, Science bulletin.

[32]  Yang Wang,et al.  Computing Permanents for Boson Sampling on Tianhe-2 Supercomputer , 2016, National Science Review.

[33]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[34]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[35]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[36]  Karol Bartkiewicz,et al.  Experimental measurement of a nonlinear entanglement witness by hyperentangling two-qubit states , 2018, Physical Review A.

[37]  T. Ralph,et al.  Adding control to arbitrary unknown quantum operations , 2010, Nature communications.

[38]  Kyu-Hwang Yeon,et al.  Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot–microcavity coupled system , 2013, 1306.4737.

[39]  E. Kashefi,et al.  Experimental verification of quantum computation , 2013, Nature Physics.

[40]  Qi Guo,et al.  Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities , 2015, Scientific Reports.

[41]  J. O'Brien Optical Quantum Computing , 2007, Science.

[42]  J. Cirac,et al.  Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.

[43]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .