Bifurcations in a one-parameter family of Lotka-Volterra 2D transformations
暂无分享,去创建一个
[1] Michael Schanz,et al. Critical homoclinic orbits lead to snap-back repellers , 2011 .
[2] I. Stewart,et al. From attractor to chaotic saddle: a tale of transverse instability , 1996 .
[3] F. R. Marotto. On redefining a snap-back repeller , 2005 .
[4] Hans Thunberg,et al. Periodicity versus Chaos in One-Dimensional Dynamics , 2001, SIAM Rev..
[5] J. Yorke,et al. Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .
[6] Laura Gardini,et al. Homoclinic bifurcations in n -dimensional endomorphisms, due to expanding periodic points , 1994 .
[7] M. Jakobson. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps , 1981 .
[8] Christian Mira,et al. Plane Maps with Denominator: I. Some Generic Properties , 1999 .
[9] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations , 1978 .
[10] M. Feigenbaum. The universal metric properties of nonlinear transformations , 1979 .
[11] A. Gasull,et al. Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem , 2018, Discrete & Continuous Dynamical Systems - B.
[12] Nathalie Gicquel. BIFURCATION STRUCTURE IN A TRANSMISSION SYSTEM MODELLED BY A TWO-DIMENSIONAL ENDOMORPHISM , 1996 .
[13] G. Swirszcz. On a certain map of a triangle , 1998, Fundamenta Mathematicae.
[14] F. R. Marotto. Snap-back repellers imply chaos in Rn , 1978 .
[15] Laura Gardini,et al. Calculation of homoclinic and heteroclinic orbits in 1D maps , 2015, Commun. Nonlinear Sci. Numer. Simul..
[16] Grebogi,et al. Critical exponents for crisis-induced intermittency. , 1987, Physical review. A, General physics.