Bifurcations in a one-parameter family of Lotka-Volterra 2D transformations

[1]  Michael Schanz,et al.  Critical homoclinic orbits lead to snap-back repellers , 2011 .

[2]  I. Stewart,et al.  From attractor to chaotic saddle: a tale of transverse instability , 1996 .

[3]  F. R. Marotto On redefining a snap-back repeller , 2005 .

[4]  Hans Thunberg,et al.  Periodicity versus Chaos in One-Dimensional Dynamics , 2001, SIAM Rev..

[5]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[6]  Laura Gardini,et al.  Homoclinic bifurcations in n -dimensional endomorphisms, due to expanding periodic points , 1994 .

[7]  M. Jakobson Absolutely continuous invariant measures for one-parameter families of one-dimensional maps , 1981 .

[8]  Christian Mira,et al.  Plane Maps with Denominator: I. Some Generic Properties , 1999 .

[9]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[10]  M. Feigenbaum The universal metric properties of nonlinear transformations , 1979 .

[11]  A. Gasull,et al.  Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem , 2018, Discrete & Continuous Dynamical Systems - B.

[12]  Nathalie Gicquel BIFURCATION STRUCTURE IN A TRANSMISSION SYSTEM MODELLED BY A TWO-DIMENSIONAL ENDOMORPHISM , 1996 .

[13]  G. Swirszcz On a certain map of a triangle , 1998, Fundamenta Mathematicae.

[14]  F. R. Marotto Snap-back repellers imply chaos in Rn , 1978 .

[15]  Laura Gardini,et al.  Calculation of homoclinic and heteroclinic orbits in 1D maps , 2015, Commun. Nonlinear Sci. Numer. Simul..

[16]  Grebogi,et al.  Critical exponents for crisis-induced intermittency. , 1987, Physical review. A, General physics.