Advances in the Application of Magnetic Nanoparticles for Sensing

Magnetic nanoparticles (MNPs) are of high significance in sensing as they provide viable solutions to the enduring challenges related to lower detection limits and nonspecific effects. The rapid expansion in the applications of MNPs creates a need to overview the current state of the field of MNPs for sensing applications. In this review, the trends and concepts in the literature are critically appraised in terms of the opportunities and limitations of MNPs used for the most advanced sensing applications. The latest progress in MNP sensor technologies is overviewed with a focus on MNP structures and properties, as well as the strategies of incorporating these MNPs into devices. By looking at recent synthetic advancements, and the key challenges that face nanoparticle-based sensors, this review aims to outline how to design, synthesize, and use MNPs to make the most effective and sensitive sensors.

[1]  A. B. Wedding,et al.  Clinical relevance of novel imaging technologies for sentinel lymph node identification and staging. , 2014, Biotechnology advances.

[2]  Saqlain A. Shah,et al.  Mixed Brownian alignment and Néel rotations in superparamagnetic iron oxide nanoparticle suspensions driven by an ac field. , 2015, Physical review. B, Condensed matter and materials physics.

[3]  Edmund J. Crampin,et al.  Minimum information reporting in bio–nano experimental literature , 2018, Nature Nanotechnology.

[4]  Sanjiv Sam Gambhir,et al.  Tomographic magnetic particle imaging of cancer targeted nanoparticles. , 2017, Nanoscale.

[5]  Chad A. Mirkin,et al.  One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes , 1998 .

[6]  D. B. Hibbert,et al.  A rapid readout for many single plasmonic nanoparticles using dark-field microscopy and digital color analysis. , 2018, Biosensors & bioelectronics.

[7]  Jinsub Choi,et al.  Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator. , 2009, The journal of physical chemistry. B.

[8]  Katharina Gaus,et al.  Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. , 2017, Nature nanotechnology.

[9]  Gustaaf Van Tendeloo,et al.  Air- and water-resistant noble metal coated ferromagnetic cobalt nanorods. , 2015, ACS nano.

[10]  Younan Xia,et al.  Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach , 2002 .

[11]  I. Willner,et al.  Magnetoswitchable Charge Transport and Bioelectrocatalysis Using Maghemite‐Au Core‐Shell Nanoparticle/Polyaniline Composites , 2007 .

[12]  Xiaoyuan Chen,et al.  Structure–Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging , 2019, Advanced materials.

[13]  C. Koch,et al.  Magnetic properties of hematite nanoparticles , 2000 .

[14]  Dan Wang,et al.  Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics. , 2016, Biosensors & bioelectronics.

[15]  D. Huber,et al.  Synthesis, properties, and applications of iron nanoparticles. , 2005, Small.

[16]  Kristopher A Kilian,et al.  The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. , 2009, Chemical communications.

[17]  T. Iwasaki,et al.  Response Surface Methodology Study on Magnetite Nanoparticle Formation under Hydrothermal Conditions , 2015 .

[18]  Fei Le,et al.  Nanorice: a hybrid plasmonic nanostructure. , 2006, Nano letters.

[19]  Kevin R Minard,et al.  Optimization of nanoparticle core size for magnetic particle imaging. , 2009, Journal of magnetism and magnetic materials.

[20]  A Paul Alivisatos,et al.  Vacancy coalescence during oxidation of iron nanoparticles. , 2007, Journal of the American Chemical Society.

[21]  Lutz Trahms,et al.  How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance , 2011 .

[22]  David E. Williams,et al.  Stability of polyelectrolyte-coated iron nanoparticles for T 2 -weighted magnetic resonance imaging , 2017 .

[23]  R. Tilley,et al.  Hot-injection synthesis of iron/iron oxide core/shell nanoparticles for T2 contrast enhancement in magnetic resonance imaging. , 2011, Chemical communications.

[24]  T. Hyeon,et al.  Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. , 2011, Small.

[25]  A. Berkowitz,et al.  Influence of Crystallite Size on the Magnetic Properties of Acicular γ‐Fe2O3 Particles , 1968 .

[26]  Sonu Gandhi,et al.  Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. , 2015, Nanoscale.

[27]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[28]  R. Tilley,et al.  Synthesis and Stability of Highly Crystalline and Stable Iron/Iron Oxide Core/Shell Nanoparticles for Biomedical Applications , 2012 .

[29]  Zhi Wei Tay,et al.  Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking. , 2018, Current opinion in chemical biology.

[30]  Chad A Mirkin,et al.  The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange , 2006, Nature Protocols.

[31]  Zhichuan J. Xu,et al.  Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. , 2007, Journal of the American Chemical Society.

[32]  Yinzhi Zhang,et al.  A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells , 2019, Analytical and Bioanalytical Chemistry.

[33]  L. Bergström,et al.  Anomalous magnetic properties of nanoparticles arising from defect structures: topotaxial oxidation of Fe(1-x)O|Fe(3-δ)O4 core|shell nanocubes to single-phase particles. , 2013, ACS nano.

[34]  Hao Zeng,et al.  Size-controlled synthesis of magnetite nanoparticles. , 2002, Journal of the American Chemical Society.

[35]  A. P. Alivisatos,et al.  A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides , 1999 .

[36]  Taeghwan Hyeon,et al.  Inorganic Nanoparticles for MRI Contrast Agents , 2009 .

[37]  S. Shivashankar,et al.  Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity , 2014 .

[38]  Mingyuan Gao,et al.  One-Pot Reaction to Synthesize Water-Soluble Magnetite Nanocrystals , 2004 .

[39]  Xinyu Wang,et al.  Simple ligand exchange reactions enabling excellent dispersibility and stability of magnetic nanoparticles in polar organic, aromatic, and protic solvents. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[40]  M. Andersson,et al.  Superparamagnetic Fe3O4SiO2 nanocomposites: enabling the tuning of both the iron oxide load and the size of the nanoparticles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[41]  J. Gooding,et al.  Challenges and Solutions in Developing Ultrasensitive Biosensors. , 2018, Journal of the American Chemical Society.

[42]  R. Gieré Magnetite in the human body: Biogenic vs. anthropogenic , 2016, Proceedings of the National Academy of Sciences.

[43]  T. Hyeon,et al.  One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. , 2005, Angewandte Chemie.

[44]  J. Gooding,et al.  Size and shape evolution of highly magnetic iron nanoparticles from successive growth reactions. , 2017, Chemical communications.

[45]  Susana Campuzano,et al.  Rapid Legionella pneumophila determination based on a disposable core-shell Fe₃O₄@poly(dopamine) magnetic nanoparticles immunoplatform. , 2015, Analytica chimica acta.

[46]  Hasan Bagheri,et al.  Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry. , 2012, Talanta.

[47]  F. Long,et al.  Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples , 2016, Scientific Reports.

[48]  Shouheng Sun,et al.  Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. , 2005, Nano letters.

[49]  Hakho Lee,et al.  Mechanism of magnetic relaxation switching sensing. , 2012, ACS nano.

[50]  A. Falqui,et al.  Iron nanoparticle growth in organic superstructures. , 2009, Journal of the American Chemical Society.

[51]  Colin L. Raston,et al.  Facile and Green Approach To Fabricate Gold and Silver Coated Superparamagnetic Nanoparticles , 2009 .

[52]  L. Liz‐Marzán,et al.  Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection , 2014 .

[53]  You Qiang,et al.  Iron/iron oxide core-shell nanoclusters for biomedical applications , 2006 .

[54]  E. Snoeck,et al.  Surface effects in maghemite nanoparticles , 2007 .

[55]  Ming Lin,et al.  Formation of hollow iron oxide tetrapods via a shape-preserving nanoscale Kirkendall effect. , 2014, Small.

[56]  A. Micolich,et al.  Nanopore blockade sensors for ultrasensitive detection of proteins in complex biological samples , 2019, Nature Communications.

[57]  I. Willner,et al.  Controlling chemical reactivity at solid-solution interfaces by means of hydrophobic magnetic nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[58]  Aaron Hansen,et al.  Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. , 2017, Nature nanotechnology.

[59]  R. Tilley,et al.  Gold over Branched Palladium Nanostructures for Photothermal Cancer Therapy. , 2015, ACS nano.

[60]  M. Schäfers,et al.  Giant magnetoresistance effects in gel-like matrices , 2013 .

[61]  John Watt,et al.  Enhanced Nanoparticle Size Control by Extending LaMer’s Mechanism , 2015 .

[62]  J. Gooding,et al.  A Comparison of Differently Synthesized Gold-Coated Magnetic Nanoparticles as ‘Dispersible Electrodes’ , 2016 .

[63]  J. Gooding,et al.  Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles : Systematic Control Using Polyethyleneimine , 2009 .

[64]  Y. Zhang,et al.  A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging , 2019, American Journal of Neuroradiology.

[65]  Max Wintermark,et al.  Janus Iron Oxides @ Semiconducting Polymer Nanoparticle Tracer for Cell Tracking by Magnetic Particle Imaging. , 2018, Nano letters.

[66]  L. Liz‐Marzán,et al.  Synthesis and Characterization of Iron/Iron Oxide Core/Shell Nanocubes , 2007 .

[67]  Ki-Bum Kim,et al.  Recent Progress in Solid‐State Nanopores , 2018, Advanced materials.

[68]  J. Gooding,et al.  Gold coated magnetic nanoparticles: from preparation to surface modification for analytical and biomedical applications. , 2016, Chemical communications.

[69]  A. B. Wedding,et al.  Novel Handheld Magnetometer Probe Based on Magnetic Tunnelling Junction Sensors for Intraoperative Sentinel Lymph Node Identification , 2015, Scientific Reports.

[70]  Yi Wang,et al.  Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance. , 2011, Analytical chemistry.

[71]  Kristofer J. Thurecht,et al.  Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date , 2016, Pharmaceutical Research.

[72]  P. Etchegoin,et al.  Synthesis and Comparison of the Magnetic Properties of Iron Sulfide Spinel and Iron Oxide Spinel Nanocrystals , 2011 .

[73]  Kevin R Minard,et al.  Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. , 2011, Medical physics.

[74]  Q. Pankhurst,et al.  Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications. , 2015, Dalton transactions.

[75]  D. Mann,et al.  Magnetite pollution nanoparticles in the human brain , 2016, Proceedings of the National Academy of Sciences.

[76]  Morteza Mahmoudi,et al.  Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. , 2012, Chemical reviews.

[77]  Katharina Gaus,et al.  Single-Molecule Sensors: Challenges and Opportunities for Quantitative Analysis. , 2016, Angewandte Chemie.

[78]  David M. Rissin,et al.  Single-Molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations , 2010, Nature Biotechnology.

[79]  Hakho Lee,et al.  Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. , 2009, Angewandte Chemie.

[80]  Daniil Karnaushenko,et al.  High-Performance Magnetic Sensorics for Printable and Flexible Electronics , 2014, Advanced materials.

[81]  J Justin Gooding,et al.  The molecular level modification of surfaces: from self-assembled monolayers to complex molecular assemblies. , 2011, Chemical Society reviews.

[82]  T. Park,et al.  Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. , 2012, ACS nano.

[83]  S. Mitragotri,et al.  Nanoparticles in the clinic , 2016, Bioengineering & translational medicine.

[84]  Mark A Griswold,et al.  Magnetic Particle Imaging Tracers: State-of-the-Art and Future Directions. , 2015, The journal of physical chemistry letters.

[85]  J. Greneche,et al.  Hydrothermal synthesis of monodisperse magnetite nanoparticles , 2006 .

[86]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[87]  Amay J. Bandodkar,et al.  Wearable Chemical Sensors: Present Challenges and Future Prospects , 2016 .

[88]  Taeghwan Hyeon,et al.  Large‐Scale Synthesis of Uniform and Crystalline Magnetite Nanoparticles Using Reverse Micelles as Nanoreactors under Reflux Conditions , 2005 .

[89]  Patrick W. Goodwill,et al.  Relaxation in X-Space Magnetic Particle Imaging , 2012, IEEE Transactions on Medical Imaging.

[90]  P. Tinnefeld,et al.  Breaking the concentration limit of optical single-molecule detection. , 2014, Chemical Society reviews.

[91]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[92]  Lijiao Yang,et al.  Correction to Cation Exchange of Anisotropic-Shaped Magnetite Nanoparticles Generates High-Relaxivity Contrast Agents for Liver Tumor Imaging , 2016, Chemistry of Materials.

[93]  Zhichuan J. Xu,et al.  Controlled synthesis and chemical conversions of FeO nanoparticles. , 2007, Angewandte Chemie.

[94]  Maren Pink,et al.  Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation , 2007 .

[95]  Yongxin Li,et al.  Selective Single Molecule Nanopore Sensing of microRNA Using PNA Functionalized Magnetic Core-Shell Fe3O4-Au Nanoparticles. , 2019, Analytical chemistry.

[96]  L. Lacroix,et al.  Room-temperature tunnel magnetoresistance in self-assembled chemically synthesized metallic iron nanoparticles. , 2011, Nano letters.

[97]  E. Lianidou,et al.  miRNA-21 as a novel therapeutic target in lung cancer , 2016, Lung Cancer.

[98]  Kelly,et al.  First-principles calculation of the magnetocrystalline anisotropy energy of iron, cobalt, and nickel. , 1990, Physical review. B, Condensed matter.

[99]  Xin Wang,et al.  Gold and magnetic oxide/gold core/shell nanoparticles as bio-functional nanoprobes , 2008, Nanotechnology.

[100]  Sabine Szunerits,et al.  Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. , 2013, Nanoscale.

[101]  Jin Xie,et al.  Synthesis and stabilization of monodisperse Fe nanoparticles. , 2006, Journal of the American Chemical Society.

[102]  M. Biziuk,et al.  Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples , 2014 .

[103]  U. Schubert,et al.  Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. , 2010, Angewandte Chemie.

[104]  Hui Li,et al.  Facile Synthesis of Au-Coated Magnetic Nanoparticles and Their Application in Bacteria Detection via a SERS Method. , 2016, ACS applied materials & interfaces.

[105]  H. Gu,et al.  Facile synthesis and morphology evolution of magnetic iron oxide nanoparticles in different polyol processes , 2011 .

[106]  Shana O. Kelley Biomolecular Sensors: Benchmarking Basics , 2016 .

[107]  L. Lacroix,et al.  Magnetically Induced Continuous CO2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power. , 2016, Angewandte Chemie.

[108]  Matthias Graeser,et al.  Magnetic Particle Imaging for Real-Time Perfusion Imaging in Acute Stroke. , 2017, ACS nano.

[109]  J. Ding,et al.  Magnetic Vortex Nanorings: A New Class of Hyperthermia Agent for Highly Efficient In Vivo Regression of Tumors , 2015, Advanced materials.

[110]  Himanshu Tyagi,et al.  Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. , 2015, Nanoscale.

[111]  M. Toney,et al.  Synthesis, alignment, and magnetic properties of monodisperse nickel nanocubes. , 2012, Journal of the American Chemical Society.

[112]  M. Casanove,et al.  Fully Crystalline Faceted Fe-Au Core-Shell Nanoparticles. , 2015, Nano letters.

[113]  M. Muhammed,et al.  Evolution of Structural and Magnetic Properties of Magnetite Nanoparticles for Biomedical Applications , 2010 .

[114]  Joseph Wang,et al.  Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. , 2001, Analytical chemistry.

[115]  Hamed Arami,et al.  Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments. , 2013, Medical physics.

[116]  J. Bacri,et al.  Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. , 2003, Biomaterials.

[117]  R. Colton,et al.  The BARC biosensor applied to the detection of biological warfare agents. , 2000, Biosensors & bioelectronics.

[118]  Jonathan Carter,et al.  Magnetic Particle Imaging for Highly Sensitive, Quantitative, and Safe in Vivo Gut Bleed Detection in a Murine Model. , 2017, ACS nano.

[119]  J. Gooding,et al.  'Dispersible electrodes': a solution to slow response times of sensitive sensors. , 2010, Chemical communications.

[120]  Xiaoyuan Chen,et al.  Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging , 2013, Nature Communications.

[121]  X. Lai,et al.  General Synthesis of Homogeneous Hollow Core-Shell Ferrite Microspheres , 2009 .

[122]  Forrest M Kievit,et al.  Magnetite Nanoparticles for Medical MR Imaging. , 2011, Materials today.

[123]  M. Yin,et al.  Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. , 2004, Journal of the American Chemical Society.

[124]  S. Kelley,et al.  Single Cell mRNA Cytometry via Sequence-Specific Nanoparticle Clustering and Trapping , 2018, Nature Chemistry.

[125]  Jinlong Gong,et al.  Structural evolution of concave trimetallic nanocubes with tunable ultra-thin shells for oxygen reduction reaction. , 2016, Nanoscale.

[126]  R. Tilley,et al.  How hollow structures form from crystalline iron-iron oxide core-shell nanoparticles in the electron beam. , 2013, Chemical communications.

[127]  M. Kovalenko,et al.  Popcorn-Shaped FexO (Wüstite) Nanoparticles from a Single-Source Precursor: Colloidal Synthesis and Magnetic Properties , 2018, Chemistry of materials : a publication of the American Chemical Society.

[128]  Young Woon Kim,et al.  Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. , 2008, Nano letters.

[129]  M. O’Donnell,et al.  Multifunctional nanoparticles as coupled contrast agents. , 2010, Nature communications.

[130]  R. Tilley,et al.  How to choose a precursor for decomposition solution-phase synthesis: the case of iron nanoparticles. , 2015, Nanoscale.

[131]  P. Callaghan,et al.  Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. , 2011, Angewandte Chemie.

[132]  Peter J Vikesland,et al.  Effects of oxidation on the magnetization of nanoparticulate magnetite. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[133]  J. Justin Gooding,et al.  Single Nanoparticle Plasmonic Sensors , 2015, Sensors.

[134]  N. P. Ulrih,et al.  Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. , 2013, Cancer letters.

[135]  E. E. Carpenter,et al.  Gold-Coated Cementite Nanoparticles: An Oxidation-Resistant Alternative to α-Iron , 2009 .

[136]  D. Lim,et al.  Application of Silver-Coated Magnetic Microspheres to a SERS-Based Optofluidic Sensor , 2011 .

[137]  D. B. Hibbert,et al.  Gold-coated magnetic nanoparticles as “dispersible electrodes” – Understanding their electrochemical performance , 2011 .

[138]  L. Lagoeiro Transformation of magnetite to hematite and its influence on the dissolution of iron oxide minerals , 1998 .

[139]  K. M. Krishnan,et al.  Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. , 2017, Nanoscale.

[140]  K. Donaldson,et al.  INFLAMMATION CAUSED BY PARTICLES AND FIBERS , 2002, Inhalation toxicology.

[141]  Patrick W. Goodwill,et al.  Magnetic Particle Imaging: A Novel in Vivo Imaging Platform for Cancer Detection. , 2017, Nano letters.

[142]  Yanmin Wang,et al.  Sonochemical Synthesis of Magnetic Nanoparticles , 2015 .

[143]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[144]  Joseph Wang,et al.  Nanoparticle-based electrochemical DNA detection , 2003 .

[145]  Jinchao Zhang,et al.  Ultrasmall Gold Nanoparticles as Carriers for Nucleus-Based Gene Therapy Due to Size-Dependent Nuclear Entry , 2014, ACS nano.

[146]  Jiashu Sun,et al.  Quantitative Detection of MicroRNA in One Step via Next Generation Magnetic Relaxation Switch Sensing. , 2016, ACS nano.

[147]  Kannan M. Krishnan,et al.  Tuning Surface Coatings of Optimized Magnetite Nanoparticle Tracers for In Vivo Magnetic Particle Imaging , 2015, IEEE Transactions on Magnetics.

[148]  Quanguo He,et al.  Hollow magnetic nanoparticles: synthesis and applications in biomedicine. , 2012, Journal of nanoscience and nanotechnology.

[149]  P. K. Deheri,et al.  Sol−Gel Based Chemical Synthesis of Nd2Fe14B Hard Magnetic Nanoparticles , 2010 .

[150]  I. Willner,et al.  Magnetoswitchable reactions of DNA monolayers on electrodes: gating the processes by hydrophobic magnetic nanoparticles. , 2005, Journal of the American Chemical Society.

[151]  K. Krishnan,et al.  Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization , 2016 .

[152]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[153]  Jinwoo Cheon,et al.  Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. , 2009, Angewandte Chemie.

[154]  C. McCammon Magnetic properties of FexO (x > 0.95): Variation of Néel temperature , 1992 .

[155]  A’Lester C. Allen,et al.  Fe3O4@SiO2 Nanoparticles Functionalized with Gold and Poly(vinylpyrrolidone) for Bio-Separation and Sensing Applications , 2018 .

[156]  Arezou A Ghazani,et al.  Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. , 2006, Nano letters.

[157]  Robert Puers,et al.  Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. , 2013, Lab on a chip.

[158]  A. Bée,et al.  Thiolation of Maghemite Nanoparticles by Dimercaptosuccinic Acid , 1997, Journal of colloid and interface science.

[159]  Ang Bee Chin,et al.  Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart's procedure , 2007 .

[160]  William W. Yu,et al.  Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. , 2004, Chemical communications.

[161]  J. Gooding,et al.  Cubic-Core Hexagonal-Branch Mechanism To Synthesize Bimetallic Branched and Faceted Pd-Ru Nanoparticles for Oxygen Evolution Reaction Electrocatalysis. , 2018, Journal of the American Chemical Society.

[162]  Jiwon Bang,et al.  Surface engineering of inorganic nanoparticles for imaging and therapy. , 2013, Advanced drug delivery reviews.

[163]  R. Amal,et al.  Ultrasensitive electrochemical detection of prostate-specific antigen (PSA) using gold-coated magnetic nanoparticles as 'dispersible electrodes'. , 2012, Chemical communications.

[164]  Zhichuan J. Xu,et al.  Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles , 2010, Advanced materials.

[165]  Ning Gan,et al.  An Ultrasensitive Electrochemical Immunosensor for HIV p24 Based on Fe3O4@SiO2 Nanomagnetic Probes and Nanogold Colloid-Labeled Enzyme–Antibody Copolymer as Signal Tag , 2013, Materials.

[166]  M. Olivo,et al.  Single-crystalline MFe(2)O(4) nanotubes/nanorings synthesized by thermal transformation process for biological applications. , 2009, ACS nano.

[167]  Naomi J Halas,et al.  Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[168]  Taeghwan Hyeon,et al.  Chemical synthesis of magnetic nanoparticles. , 2003, Chemical communications.

[169]  J. Liu,et al.  Zinc ferrite nanoparticles as MRI contrast agents. , 2008, Chemical communications.

[170]  Ian Papautsky,et al.  Capture of Circulating Tumour Cell Clusters Using Straight Microfluidic Chips , 2019, Cancers.

[171]  Jung-tak Jang,et al.  Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. , 2012, Nano letters.

[172]  Etienne Snoeck,et al.  Colloidal synthesis and characterization of tetrapod-shaped magnetic nanocrystals. , 2006, Nano letters.

[173]  W. Schuhmann,et al.  Three-Dimensional Branched and Faceted Gold-Ruthenium Nanoparticles: Using Nanostructure to Improve Stability in Oxygen Evolution Electrocatalysis. , 2018, Angewandte Chemie.

[174]  P. Nordlander,et al.  Magnetic-plasmonic core-shell nanoparticles. , 2009, ACS nano.

[175]  Chad A Mirkin,et al.  A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. , 2005, Journal of the American Chemical Society.

[176]  B Gleich,et al.  First experimental evidence of the feasibility of multi-color magnetic particle imaging , 2015, Physics in medicine and biology.

[177]  I. Serša,et al.  Hybrid FePt/SiO2/Au nanoparticles as a theranostic tool: in vitro photo-thermal treatment and MRI imaging. , 2018, Nanoscale.

[178]  E. Coy,et al.  Seeded Growth Synthesis of Au–Fe3O4 Heterostructured Nanocrystals: Rational Design and Mechanistic Insights , 2017 .

[179]  E. Snoeck,et al.  Magnetic configurations of 30 nm iron nanocubes studied by electron holography. , 2008, Nano letters.

[180]  Seyed Mohammadali Dadfar,et al.  Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications , 2019, Advanced drug delivery reviews.

[181]  C. Delerue-Matos,et al.  Iron oxide/gold core/shell nanomagnetic probes and CdS biolabels for amplified electrochemical immunosensing of Salmonella typhimurium. , 2014, Biosensors & bioelectronics.

[182]  Yuehe Lin,et al.  A magnetic electrochemical immunosensor for the detection of phosphorylated p53 based on enzyme functionalized carbon nanospheres with signal amplification , 2014 .

[183]  A. Limaye,et al.  Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification. , 2009, Analytical chemistry.

[184]  H. Shokrollahi A review of the magnetic properties, synthesis methods and applications of maghemite , 2017 .

[185]  Mehmet Toner,et al.  Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. , 2014, Nature nanotechnology.

[186]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[187]  Nicholas Ariotti,et al.  Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microRNA detection in blood , 2018, Nature Nanotechnology.

[188]  S. Maenosono,et al.  Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. , 2015, Nanoscale.

[189]  Brigitte Rack,et al.  Detection of Circulating Tumor Cells in Peripheral Blood of Patients with Metastatic Breast Cancer: A Validation Study of the CellSearch System , 2007, Clinical Cancer Research.

[190]  H. Shokrollahi,et al.  Ferrite-based magnetic nanofluids used in hyperthermia applications , 2012 .

[191]  Hakho Lee,et al.  Multiplexed Magnetic Labeling Amplification Using Oligonucleotide Hybridization , 2011, Advanced materials.

[192]  Ji-Eun Kim,et al.  Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects , 2011, Archives of Toxicology.

[193]  Jinwoo Cheon,et al.  Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging , 2007, Nature Medicine.

[194]  Eran A Barnoy,et al.  The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study. , 2017, Nanomedicine.

[195]  K. Held,et al.  Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. , 2016, Nature materials.

[196]  Frank Ludwig,et al.  Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy. , 2014, Journal of magnetism and magnetic materials.