Magnetic Nanowires for Nanobarcoding and Beyond

Multifunctional magnetic nanowires (MNWs) have been studied intensively over the last decades, in diverse applications. Numerous MNW-based systems have been introduced, initially for fundamental studies and later for sensing applications such as biolabeling and nanobarcoding. Remote sensing of MNWs for authentication and/or anti-counterfeiting is not only limited to engineering their properties, but also requires reliable sensing and decoding platforms. We review the latest progress in designing MNWs that have been, and are being, introduced as nanobarcodes, along with the pros and cons of the proposed sensing and decoding methods. Based on our review, we determine fundamental challenges and suggest future directions for research that will unleash the full potential of MNWs for nanobarcoding applications.

[1]  J. Liu,et al.  Structural, morphological and magnetic properties of compositionally modulated CoNi nanowires , 2020 .

[2]  C. Graham,et al.  Introduction to Magnetic Materials , 1972 .

[3]  Rhonda R. Franklin,et al.  Realizing the Principles for Remote and Selective Detection of Cancer Cells Using Magnetic Nanowires. , 2021, The journal of physical chemistry. B.

[4]  D. J. Robertson Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetisation acquisition curves , 1994 .

[5]  B. Stadler,et al.  Magnetic nanowires for quantitative detection of biopolymers , 2020 .

[6]  A. Ramazani,et al.  Tailoring magnetic properties in arrays of pulse-electrodeposited Co nanowires: The role of Cu additive , 2016 .

[7]  C. R. Pike First-order reversal-curve diagrams and reversible magnetization , 2003 .

[8]  Monika Milewski,et al.  Decoding randomly ordered DNA arrays. , 2004, Genome research.

[9]  Mehmet Toner,et al.  Multifunctional Encoded Particles for High-Throughput Biomolecule Analysis , 2007, Science.

[10]  K. R. Pirota,et al.  High-frequency GMI hysteresis effect analysis by first-order reversal curve (FORC) method , 2021 .

[11]  J. Rial,et al.  A Novel Design of a 3D Racetrack Memory Based on Functional Segments in Cylindrical Nanowire Arrays , 2020, Nanomaterials.

[12]  A. Ramazani,et al.  Study of reversible magnetization in FeCoNi alloy nanowires with different diameters by first order reversal curve (FORC) diagrams , 2018 .

[13]  Gunther Hartmann,et al.  SiRNA delivery with exosome nanoparticles , 2011, Nature Biotechnology.

[14]  M. Vázquez,et al.  Modeling magnetic-field-induced domain wall propagation in modulated-diameter cylindrical nanowires , 2018, Scientific Reports.

[15]  Aijun Liu,et al.  A supplier evaluation model based on customer demand in blockchain tracing anti-counterfeiting platform project management , 2020 .

[16]  M. Demand,et al.  Effect of dipolar interactions on the ferromagnetic resonance properties in arrays of magnetic nanowires , 2001 .

[17]  R. Das,et al.  Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications , 2021, Nanoscale advances.

[18]  E. Ricciardi,et al.  Tuned scattering of Electromagnetic Waves by a Finite Length Ferromagnetic Microwire , 2016, IEEE Transactions on Antennas and Propagation.

[19]  M. Khanna,et al.  One dimensional FexCo1-x nanowires; ferromagnetic resonance and magnetization dynamics , 2017 .

[20]  V. Galstyan "Quantum dots: Perspectives in next-generation chemical gas sensors" ‒ A review. , 2021, Analytica chimica acta.

[21]  W. Bailey,et al.  Static and Dynamic Magnetization of Gradient FeNi Alloy Nanowire , 2016, Scientific Reports.

[22]  A. Tamion,et al.  Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition. , 2015, Physical chemistry chemical physics : PCCP.

[23]  R. Murakami,et al.  Improved microstructure and magnetic properties of iron-cobalt nanowire via an ac electrodeposition with a multistep voltage , 2010 .

[24]  Frank Ludwig,et al.  Multivariate Magnetic Particle Spectroscopy for Magnetic Nanoparticle Characterization , 2010 .

[25]  Huchang Liao,et al.  A multi-criteria decision making method based on DNMA and CRITIC with linguistic D numbers for blockchain platform evaluation , 2021, Eng. Appl. Artif. Intell..

[26]  Rhonda R. Franklin,et al.  Selective Detection of Cancer Cells Using Magnetic Nanowires. , 2021, ACS applied materials & interfaces.

[27]  G. Schütz,et al.  gFORC: A graphics processing unit accelerated first-order reversal-curve calculator , 2019, Journal of Applied Physics.

[28]  M. Vázquez,et al.  Domain wall pinning in FeCoCu bamboo-like nanowires , 2015, Scientific Reports.

[29]  R. Yu,et al.  Gradient magnetic binary alloy nanowire , 2014 .

[30]  Pierre P. D. Kondiah,et al.  Multifunctional Magnetic Nanowires: Design, Fabrication, and Future Prospects as Cancer Therapeutics , 2019, Cancers.

[31]  Diana C. Leitao,et al.  Nanoporous alumina as templates for multifunctional applications , 2014 .

[32]  Zhijun Zhang,et al.  Comparative study in fabrication and magnetic properties of FeNi alloy nanowires and nanotubes , 2013 .

[33]  G. Fecher,et al.  Rational design of new materials for spintronics: Co2FeZ (Z=Al, Ga, Si, Ge) , 2008, Science and technology of advanced materials.

[34]  A. Offenhäusser,et al.  Magnetic particle detection by frequency mixing for immunoassay applications , 2007 .

[35]  A. Stancu,et al.  Variation of magnetic anisotropy and temperature-dependent FORC probing of compositionally tuned Co-Ni alloy nanowires , 2018 .

[36]  J. Kosel,et al.  Fabrication of Long-Range Ordered Aluminum Oxide and Fe/Au Multilayered Nanowires for 3-D Magnetic Memory , 2020, IEEE Transactions on Magnetics.

[37]  Amikam Aharoni,et al.  Angular dependence of nucleation by curling in a prolate spheroid , 1997 .

[38]  Mohammad Reza Zamani Kouhpanji,et al.  Fast and universal approach for quantitative measurements of bistable hysteretic systems , 2021 .

[39]  E. Vallés,et al.  Electrochemical control of composition and crystalline structure of CoNi nanowires and films prepared potentiostatically from a single bath , 2013 .

[40]  Hagen Stockhausen Some new aspects for the modelling of isothermal remanent magnetization acquisition curves by cumulative log Gaussian functions , 1998 .

[41]  U. Ruktanonchai,et al.  Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood–brain barrier penetration , 2019, Scientific Reports.

[42]  M. Vázquez,et al.  Spin configuration in isolated FeCoCu nanowires modulated in diameter , 2015, Nanotechnology.

[43]  F. Bitter On the Magnetic Properties of Metals , 1930 .

[44]  M. Abdellahi,et al.  The effect of the particle size on the heating and drug release potential of the magnetic nanoparticles in a novel point of view , 2021, Journal of Magnetism and Magnetic Materials.

[45]  Swati Shikha,et al.  Versatile design and synthesis of nano-barcodes. , 2017, Chemical Society reviews.

[46]  M. Vázquez,et al.  Angular dependence of coercivity with temperature in Co-based nanowires , 2015 .

[47]  Thorsten M. Buzug,et al.  Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging , 2009 .

[48]  T. Schaeffter,et al.  Imaging and quantification of magnetic nanoparticles: Comparison of magnetic resonance imaging and magnetic particle imaging , 2019, Journal of Magnetism and Magnetic Materials.

[49]  Su Seong Lee,et al.  Remanence Plots as a Probe of Spin Disorder in Magnetic Nanoparticles , 2017 .

[50]  F. Favier,et al.  Metal nanowire arrays by electrodeposition. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[51]  Andrew P. Roberts,et al.  Characterizing interactions in fine magnetic particle systems using first order reversal curves , 1999 .

[52]  I. Tabaković,et al.  Preparation of metastable CoFeNi alloys with ultra-high magnetic saturation (B s = 2.4-2.59 T) by reverse pulse electrodeposition , 2018 .

[53]  Mohammad Reza Zamani Kouhpanji,et al.  A Guideline for Effectively Synthesizing and Characterizing Magnetic Nanoparticles for Advancing Nanobiotechnology: A Review , 2020, Sensors.

[54]  Nitin Parsa,et al.  Ferromagnetic Nanowires for Nonreciprocal Millimeter-Wave Applications: Investigations of Artificial Ferrites for Realizing High-Frequency Communication Components , 2018, IEEE Nanotechnology Magazine.

[55]  M. Vázquez,et al.  Magnetic Configurations in Modulated Cylindrical Nanowires , 2021, Nanomaterials.

[56]  Nguyen T. K. Thanh,et al.  Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. , 2018, Nanoscale.

[57]  L. Hamadou,et al.  Electrodeposition of equiatomic FeNi and FeCo nanowires: Structural and magnetic properties , 2020 .

[58]  John B Weaver,et al.  Magnetic nanoparticle sensing: decoupling the magnetization from the excitation field , 2014, Journal of physics D: Applied physics.

[59]  B. Stadler,et al.  Exploring Effects of Magnetic Nanowire Arrangements and Imperfections on First-Order Reversal Curve Diagrams , 2022, IEEE Transactions on Magnetics.

[60]  L. Trahms,et al.  Towards quantitative magnetic particle imaging: A comparison with magnetic particle spectroscopy , 2018 .

[61]  B. Stadler,et al.  Demultiplexing of Magnetic Nanowires with Overlapping Signatures for Tagged Biological Species , 2020 .

[62]  Martin A M Gijs,et al.  Microfluidic applications of magnetic particles for biological analysis and catalysis. , 2010, Chemical reviews.

[63]  B. Nysten,et al.  Relation of the average interaction field with the coercive and interaction field distributions in First order reversal curve diagrams of nanowire arrays , 2020, Scientific Reports.

[64]  B. Stadler,et al.  Projection method as a probe for multiplexing/demultiplexing of magnetically enriched biological tissues , 2020, RSC advances.

[65]  Bethanie J. H. Stadler,et al.  Unlocking the decoding of unknown magnetic nanobarcode signatures , 2020, Nanoscale advances.

[66]  J. Geshev,et al.  Remanence curves for a disordered system of three- and four-axial fine particles. Henkel-type plots , 1992 .

[67]  J. Escrig,et al.  Geometry dependence of coercivity in Ni nanowire arrays , 2008, Nanotechnology.

[68]  M. Toimil-Molares,et al.  Magnetic configurations of Ni–Cu alloy nanowires obtained by the template method , 2013, Journal of Nanoparticle Research.

[69]  K. Wu,et al.  Multi-Segmented Nanowires: A High Tech Bright Future , 2019, Materials.

[70]  Anindita Das,et al.  Concentration gradient Co–Fe nanowire arrays: Microstructure to magnetic characterizations , 2020 .

[71]  B. Nelson,et al.  Fabrication of segmented Au/Co/Au nanowires: insights in the quality of Co/Au junctions. , 2014, ACS applied materials & interfaces.

[72]  J. Escrig,et al.  Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach , 2018, Nanotechnology.

[73]  M. A. Chuev,et al.  Nanowires Made of FeNi and FeCo Alloys: Synthesis, Structure, and Mössbauer Measurements , 2020 .

[74]  S. Karim,et al.  Magnetic behavior of arrays of nickel nanowires: Effect of microstructure and aspect ratio , 2011 .

[75]  Hélder A Santos,et al.  Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy , 2019, Nature Communications.

[76]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[77]  J. Iqbal,et al.  Compositional dependent morphology, structural and magnetic properties of Fe100−XCuX alloy nanowires via electrodeposition in AAO templates , 2018, Applied Physics A.

[78]  A. Stancu,et al.  What does a first-order reversal curve diagram really mean? A study case: Array of ferromagnetic nanowires , 2013 .

[79]  Xiaohua Huang,et al.  Molecular Detection and Analysis of Exosomes Using Surface-Enhanced Raman Scattering Gold Nanorods and a Miniaturized Device , 2018, Theranostics.

[80]  X. Bai,et al.  Highly Stable and Spectrally Tunable Gamma Phase RbxCs1–xPbI3 Gradient‐Alloyed Quantum Dots in PMMA Matrix through A Sites Engineering , 2021, Advanced Functional Materials.

[81]  Petr I. Nikitin,et al.  New type of biosensor based on magnetic nanoparticle detection , 2007 .

[82]  P. Visscher,et al.  Facile decoding of quantitative signatures from magnetic nanowire arrays , 2020, Scientific Reports.

[83]  S. Agarwal,et al.  Effect of pH and Boric Acid on Magnetic Properties of Electrodeposited Co Nanowires , 2020, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences.

[84]  P. Fischer,et al.  Launching a new dimension with 3D magnetic nanostructures , 2020, APL Materials.

[85]  E. D. Biasi,et al.  Quantitative study of FORC diagrams in thermally corrected Stoner– Wohlfarth nanoparticles systems , 2016 .

[86]  R. Cichelero,et al.  Remanence plots technique extended to exchange bias systems , 2013 .

[87]  Kai Liu,et al.  Quantitative Decoding of Interactions in Tunable Nanomagnet Arrays Using First Order Reversal Curves , 2014, Scientific Reports.

[88]  S. Ozkan,et al.  Magnetic nanoparticles in developing electrochemical sensors for pharmaceutical and biomedical applications. , 2021, Talanta.

[89]  Li Sun,et al.  Tuning the properties of magnetic nanowires , 2006, IBM J. Res. Dev..

[90]  Boris Murmann,et al.  Matrix-insensitive protein assays push the limits of biosensors in medicine , 2009, Nature Medicine.

[91]  F. Pfeifer,et al.  Soft magnetic Ni-Fe and Co-Fe alloys - some physical and metallurgical aspects , 1980 .

[92]  Jimmy Xu,et al.  Fabrication of highly ordered metallic nanowire arrays by electrodeposition , 2001 .

[93]  B. Stadler,et al.  Magnetic Nanowires toward Authentication , 2020, Particle & Particle Systems Characterization.

[94]  E. Podlaha,et al.  Influence of Citric and Ascorbic Acids on Electrodeposited Au/FeAu Multilayer Nanowires , 2010 .

[95]  Y. Yamini,et al.  Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications , 2010 .

[96]  V. Prida,et al.  Ferromagnetic resonance in low interacting permalloy nanowire arrays , 2016 .

[97]  Liao Chang,et al.  Waiting for Forcot: Accelerating FORC Processing 100× Using a Fast‐Fourier‐Transform Algorithm , 2019, Geochemistry, Geophysics, Geosystems.

[98]  A. Pühler,et al.  Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. , 2004, Biosensors & bioelectronics.

[99]  Gülçin Büyüközkan,et al.  A decision-making framework for evaluating appropriate business blockchain platforms using multiple preference formats and VIKOR , 2021, Inf. Sci..

[100]  John P Nolan,et al.  Suspension array technology: evolution of the flat-array paradigm. , 2002, Trends in biotechnology.

[101]  I. Kazeminezhad,et al.  Structural, magnetic and optical investigation of AC pulse electrodeposited zinc ferrite nanowires with different diameters and lengths , 2021 .

[102]  A. Elmekawy,et al.  Magnetic properties of ordered arrays of iron nanowires: The impact of the length , 2021 .

[103]  Isaak D. Mayergoyz,et al.  Hysteresis models from the mathematical and control theory points of view , 1985 .

[104]  Alexander P. Safronov,et al.  Magnetoimpedance Thin Film Sensor for Detecting of Stray Fields of Magnetic Particles in Blood Vessel , 2021, Sensors.

[105]  Marisol Martín-González,et al.  Tailoring Magnetic Anisotropy at Will in 3D Interconnected Nanowire Networks , 2019, physica status solidi (RRL) – Rapid Research Letters.

[106]  Mohammad Reza Zamani Kouhpanji,et al.  Underlying magnetization responses of magnetic nanoparticles in assemblies , 2020, 2002.07742.

[107]  S. Naseem,et al.  Effects of pH on the crystallographic structure and magnetic properties of electrodeposited cobalt nanowires , 2015 .

[108]  Louise Manning,et al.  Developing anti-counterfeiting measures: The role of smart packaging. , 2019, Food research international.

[109]  V. Strauss,et al.  A Supraparticle‐Based Five‐Level‐Identification Tag That Switches Information Upon Readout , 2020, Advanced Optical Materials.

[110]  A. Ramazani,et al.  Study on magnetic properties of NiFe/Cu multisegmented nanowire arrays with different Cu thicknesses via FORC analysis: coercivity, interaction, magnetic reversibility , 2018, Journal of Materials Science: Materials in Electronics.

[111]  M. Vázquez,et al.  Magnetic anisotropy in CoNi nanowire arrays: Analytical calculations and experiments , 2012 .

[112]  Jun Hu,et al.  Preparation and magnetic properties of gradient diameter FeCoNi alloys nanowires arrays , 2021 .

[113]  Shan X. Wang,et al.  Advances in Giant Magnetoresistance Biosensors With Magnetic Nanoparticle Tags: Review and Outlook , 2008, IEEE Transactions on Magnetics.

[114]  J. E. Davies,et al.  Reconstructing phase-resolved hysteresis loops from first-order reversal curves , 2020, Scientific Reports.

[115]  J. Colvin,et al.  3D Nanomagnetism in Low Density Interconnected Nanowire Networks. , 2020, Nano letters.

[116]  Faster modified protocol for first order reversal curve measurements , 2017 .

[117]  Manh-Huong Phan,et al.  Magnetization Reversal and Magnetic Anisotropy in Ordered CoNiP Nanowire Arrays: Effects of Wire Diameter , 2015, Sensors.

[118]  H. Chiriac,et al.  Controlled electrodeposition and magnetic properties of Co35Fe65 nanowires with high saturation magnetization , 2017 .

[119]  Chi-Chang Hu,et al.  Iron–cobalt and iron–cobalt–nickel nanowires deposited by means of cyclic voltammetry and pulse-reverse electroplating , 2003 .

[120]  T. Blon,et al.  FORC signatures and switching-field distributions of dipolar coupled nanowire-based hysterons , 2020 .

[121]  A. Tamion,et al.  Advanced magnetic anisotropy determination through isothermal remanent magnetization of nanoparticles , 2013 .

[122]  A. Stancu,et al.  Tracking the individual magnetic wires' switchings in ferromagnetic nanowire arrays using the first-order reversal curves (FORC) diagram method , 2015 .

[123]  Isaak D. Mayergoyz,et al.  The classical Preisach model of hysteresis and reversibility , 1991 .

[124]  B. Stadler,et al.  Beyond the qualitative description of complex magnetic nanoparticle arrays using FORC measurement , 2020, Nano Express.

[125]  Daqin Chen,et al.  Perovskite Quantum Dots Glasses Based Backlit Displays , 2021 .

[126]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[127]  Rhonda R. Franklin,et al.  Magnetic Nanowire Biolabels Using Ferromagnetic Resonance Identification , 2021 .

[128]  Tim Reuter,et al.  Luminescent Supraparticles Based on CaF2–Nanoparticle Building Blocks as Code Objects with Unique IDs , 2020 .

[129]  M. Vázquez,et al.  Magnetic behavior of NiCu nanowire arrays: Compositional, geometry and temperature dependence , 2014 .

[130]  D. Heslop,et al.  Unmixing magnetic remanence curves without a priori knowledge , 2007 .