Nodal configurations and voronoi tessellations for triangular spectral elements
暂无分享,去创建一个
[1] F. Dupont,et al. The Adaptive Spectral Element Method and Comparisons with More Traditional Formulations for Ocean Modeling , 2004 .
[2] David P. Dobkin,et al. The quickhull algorithm for convex hulls , 1996, TOMS.
[3] Mervin E. Muller,et al. A note on a method for generating points uniformly on n-dimensional spheres , 1959, CACM.
[4] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[5] Jan S. Hesthaven,et al. Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .
[6] Ronald Cools,et al. A survey of numerical cubature over triangles , 1993 .
[7] L. Fejér,et al. Bestimmung derjenigen Abszissen eines Intervalles, für welche die Quadratsumme der Grundfunktionen der Lagrangeschen Interpolation im Intervalle ein Möglichst kleines Maximum Besitzt , 1932 .
[8] Qiang Du,et al. Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations , 2002, Parallel Comput..
[9] Jörg Fliege,et al. The distribution of points on the sphere and corresponding cubature formulae , 1999 .
[10] Francesca Rapetti,et al. Spectral element methods on triangles and quadrilaterals: comparisons and applications , 2004 .
[11] Allan Pinkus,et al. Proof of the conjectures of Bernstein and Erdös concerning the optimal nodes for polynomial interpolation , 1978 .
[12] Stephen M. Griffies,et al. The Gent–McWilliams Skew Flux , 1998 .
[13] George J. Fix,et al. Finite Element Models for Ocean Circulation Problems , 1975 .
[14] J. Doye,et al. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.
[15] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[16] J. Hammersley. SIMULATION AND THE MONTE CARLO METHOD , 1982 .
[17] J. A. Sethian,et al. Fast Marching Methods , 1999, SIAM Rev..
[18] Qiang Du,et al. Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..
[19] E. Saff,et al. Distributing many points on a sphere , 1997 .
[20] W. Munk,et al. Abyssal recipes II: energetics of tidal and wind mixing , 1998 .
[21] Jonathan Richard Shewchuk,et al. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.
[22] Mirosław Baran. Complex equilibrium measure and Bernstein type theorems for compact sets in ⁿ , 1995 .
[23] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[24] T. Koornwinder. Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .
[25] Jan S. Hesthaven,et al. From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .
[26] J. Boyd,et al. A staggered spectral element model with application to the oceanic shallow , 1995 .
[27] L. Brutman,et al. ON THE LEBESGUE FUNCTION FOR POLYNOMIAL INTERPOLATION , 1978 .
[28] R. Aris. Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .
[29] Mark A. Taylor,et al. The Spectral Element Atmosphere Model (SEAM): High-Resolution Parallel Computation and Localized Resolution of Regional Dynamics , 2004 .
[30] G. Karniadakis,et al. Spectral/hp Element Methods for CFD , 1999 .
[31] Robert J. Renka,et al. Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere , 1997, TOMS.
[32] Rainer Storn,et al. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..
[33] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[34] Robert S. Womersley. A continuous minimax problem for calculating minimum norm polynomial interpolation points on the sphere , 2000 .
[35] Manfred Reimer,et al. A Remez-type algorithm for the calculation of extremal fundamental systems for polynomial spaces on teh sphere , 2005, Computing.
[36] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[37] Ian H. Sloan,et al. Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..
[38] C. D. Perttunen,et al. Lipschitzian optimization without the Lipschitz constant , 1993 .
[39] Len Bos,et al. Polynomial Interpretation of Holomorphic Functions in $\c$ and $\c^n$ , 1992 .
[40] M. Taylor. The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .
[41] Lester Ingber,et al. Simulated annealing: Practice versus theory , 1993 .
[42] Robert G. Owens,et al. Spectral approximations on the triangle , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[43] Song Xu,et al. Smoothing Method for Minimax Problems , 2001, Comput. Optim. Appl..
[44] Mark A. Taylor,et al. Tensor product Gauss-Lobatto points are Fekete points for the cube , 2001, Math. Comput..
[45] Moshe Dubiner. Spectral methods on triangles and other domains , 1991 .
[46] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[47] Gene H. Golub,et al. Matrix computations , 1983 .
[48] Ivo Babuška,et al. Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle , 1995 .
[49] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[50] P. Silvester. High-order polynomial triangular finite elements for potential problems , 1969 .
[51] Dale B. Haidvogel,et al. A three-dimensional spectral element model for the solution of the hydrostatic primitive equations , 2003 .
[52] Ken Shoemake,et al. Animating rotation with quaternion curves , 1985, SIGGRAPH.
[53] Jan S. Hesthaven,et al. Stable Spectral Methods on Tetrahedral Elements , 1999, SIAM J. Sci. Comput..
[54] Samuel R. Buss,et al. Spherical averages and applications to spherical splines and interpolation , 2001, TOGS.
[55] E. A. Soluri,et al. World Vector Shoreline , 1990 .
[56] Len Bos. Bounding the Lebesgue function for Lagrange interpolation in a simplex , 1983 .
[57] James Kennedy,et al. Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.
[58] The Lebesgue constant for Lagrange interpolation in the Simplex , 1988 .
[59] Mark A. Taylor,et al. An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..
[60] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.