Nodal configurations and voronoi tessellations for triangular spectral elements

By combining the high-order accuracy of spectral expansions with the locality and geometric flexibility of finite elements, spectral elements are an attractive option for the next generation of numerical climate models. Crucial to their construction is the configuration of nodes in an element---casual placement leads to polynomial fits exhibiting Runge phenomena manifested by wild spatial oscillations. I provide high-order triangular elements suitable for incorporation into existing spectral element codes. Constructed from a variety of measures of optimality, these nodes possess the best interpolation error norms discovered to date. Motivated by the need to accurately determine these error norms, I present an optimization method suitable for finding extrema in a triangle. It marries a branch and bound algorithm to a quadtree smoothing scheme. The resulting scheme is both robust and efficient, promising general applicability. In order to qualitatively evaluate these nodal distributions, I introduce the concept of a Lagrangian Voronoi tessellation. This partitioning of the triangle illustrates the regions over which each node dominates. I argue that distant and disconnected regions are undesirable as they exhibit a non-physical influence. Finally, I have discovered a link between point distributions in the simplex and on the hypersphere. Through a simple transformation, a distance metric is defined permitting the construction of Voronoi diagrams and the calculation of mesh norms.

[1]  F. Dupont,et al.  The Adaptive Spectral Element Method and Comparisons with More Traditional Formulations for Ocean Modeling , 2004 .

[2]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[3]  Mervin E. Muller,et al.  A note on a method for generating points uniformly on n-dimensional spheres , 1959, CACM.

[4]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[5]  Jan S. Hesthaven,et al.  Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .

[6]  Ronald Cools,et al.  A survey of numerical cubature over triangles , 1993 .

[7]  L. Fejér,et al.  Bestimmung derjenigen Abszissen eines Intervalles, für welche die Quadratsumme der Grundfunktionen der Lagrangeschen Interpolation im Intervalle ein Möglichst kleines Maximum Besitzt , 1932 .

[8]  Qiang Du,et al.  Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations , 2002, Parallel Comput..

[9]  Jörg Fliege,et al.  The distribution of points on the sphere and corresponding cubature formulae , 1999 .

[10]  Francesca Rapetti,et al.  Spectral element methods on triangles and quadrilaterals: comparisons and applications , 2004 .

[11]  Allan Pinkus,et al.  Proof of the conjectures of Bernstein and Erdös concerning the optimal nodes for polynomial interpolation , 1978 .

[12]  Stephen M. Griffies,et al.  The Gent–McWilliams Skew Flux , 1998 .

[13]  George J. Fix,et al.  Finite Element Models for Ocean Circulation Problems , 1975 .

[14]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[15]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[16]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .

[17]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[18]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[19]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[20]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[21]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[22]  Mirosław Baran Complex equilibrium measure and Bernstein type theorems for compact sets in ⁿ , 1995 .

[23]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[24]  T. Koornwinder Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .

[25]  Jan S. Hesthaven,et al.  From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .

[26]  J. Boyd,et al.  A staggered spectral element model with application to the oceanic shallow , 1995 .

[27]  L. Brutman,et al.  ON THE LEBESGUE FUNCTION FOR POLYNOMIAL INTERPOLATION , 1978 .

[28]  R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .

[29]  Mark A. Taylor,et al.  The Spectral Element Atmosphere Model (SEAM): High-Resolution Parallel Computation and Localized Resolution of Regional Dynamics , 2004 .

[30]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[31]  Robert J. Renka,et al.  Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere , 1997, TOMS.

[32]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[33]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[34]  Robert S. Womersley A continuous minimax problem for calculating minimum norm polynomial interpolation points on the sphere , 2000 .

[35]  Manfred Reimer,et al.  A Remez-type algorithm for the calculation of extremal fundamental systems for polynomial spaces on teh sphere , 2005, Computing.

[36]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[37]  Ian H. Sloan,et al.  Extremal Systems of Points and Numerical Integration on the Sphere , 2004, Adv. Comput. Math..

[38]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[39]  Len Bos,et al.  Polynomial Interpretation of Holomorphic Functions in $\c$ and $\c^n$ , 1992 .

[40]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[41]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[42]  Robert G. Owens,et al.  Spectral approximations on the triangle , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  Song Xu,et al.  Smoothing Method for Minimax Problems , 2001, Comput. Optim. Appl..

[44]  Mark A. Taylor,et al.  Tensor product Gauss-Lobatto points are Fekete points for the cube , 2001, Math. Comput..

[45]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[46]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[47]  Gene H. Golub,et al.  Matrix computations , 1983 .

[48]  Ivo Babuška,et al.  Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle , 1995 .

[49]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[50]  P. Silvester High-order polynomial triangular finite elements for potential problems , 1969 .

[51]  Dale B. Haidvogel,et al.  A three-dimensional spectral element model for the solution of the hydrostatic primitive equations , 2003 .

[52]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[53]  Jan S. Hesthaven,et al.  Stable Spectral Methods on Tetrahedral Elements , 1999, SIAM J. Sci. Comput..

[54]  Samuel R. Buss,et al.  Spherical averages and applications to spherical splines and interpolation , 2001, TOGS.

[55]  E. A. Soluri,et al.  World Vector Shoreline , 1990 .

[56]  Len Bos Bounding the Lebesgue function for Lagrange interpolation in a simplex , 1983 .

[57]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[58]  The Lebesgue constant for Lagrange interpolation in the Simplex , 1988 .

[59]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[60]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.