Argonaute proteins: key players in RNA silencing

[1]  Haifan Lin,et al.  An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster , 2007, Nature.

[2]  G. Meister,et al.  Proteomic and functional analysis of Argonaute‐containing mRNA–protein complexes in human cells , 2007, EMBO reports.

[3]  S. Jacobsen,et al.  Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. , 2007, Genes & development.

[4]  R. Plasterk,et al.  Structural features of small RNA precursors determine Argonaute loading in Caenorhabditis elegans , 2007, Nature Structural &Molecular Biology.

[5]  M. Hentze,et al.  A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain , 2007, Nature Structural &Molecular Biology.

[6]  Seth D Findley,et al.  Drosophila PIWI associates with chromatin and interacts directly with HP1a. , 2007, Genes & development.

[7]  Phillip D. Zamore,et al.  Sorting of Drosophila Small Silencing RNAs , 2007, Cell.

[8]  Phillip D. Zamore,et al.  Drosophila microRNAs Are Sorted into Functionally Distinct Argonaute Complexes after Production by Dicer-1 , 2007, Cell.

[9]  Peng Wang,et al.  The Drosophila RNA Methyltransferase, DmHen1, Modifies Germline piRNAs and Single-Stranded siRNAs in RISC , 2007, Current Biology.

[10]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[11]  D. Bartel,et al.  Intronic microRNA precursors that bypass Drosha processing , 2007, Nature.

[12]  Kuniaki Saito,et al.  Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3' ends. , 2007, Genes & development.

[13]  M. Kiriakidou,et al.  An mRNA m7G Cap Binding-like Motif within Human Ago2 Represses Translation , 2007, Cell.

[14]  A. Pasquinelli,et al.  MicroRNA silencing through RISC recruitment of eIF6 , 2007, Nature.

[15]  Matthias W. Hentze,et al.  Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation , 2007, Nature.

[16]  O. Voinnet,et al.  Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways , 2007, Nature Genetics.

[17]  T. Schüpbach,et al.  zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. , 2007, Developmental cell.

[18]  Eugene Berezikov,et al.  A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish , 2007, Cell.

[19]  H. Ueda,et al.  The 3′ termini of mouse Piwi-interacting RNAs are 2′-O-methylated , 2007, Nature Structural &Molecular Biology.

[20]  Zissimos Mourelatos,et al.  Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini , 2007, Nature Structural &Molecular Biology.

[21]  G. Hannon,et al.  MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. , 2007, Developmental cell.

[22]  J. Steitz,et al.  AU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2 , 2007, Cell.

[23]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[24]  Xianwu Zheng,et al.  Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing , 2007, The EMBO journal.

[25]  Kuniaki Saito,et al.  A Slicer-Mediated Mechanism for Repeat-Associated siRNA 5' End Formation in Drosophila , 2007, Science.

[26]  Robert A. Martienssen,et al.  Noncoding RNAs and Gene Silencing , 2007, Cell.

[27]  Titia Sijen,et al.  Secondary siRNAs Result from Unprimed RNA Synthesis and Form a Distinct Class , 2007, Science.

[28]  Andrew Fire,et al.  Distinct Populations of Primary and Secondary Effectors During RNAi in C. elegans , 2007, Science.

[29]  Leemor Joshua-Tor,et al.  Slicer and the argonautes. , 2007, Nature chemical biology.

[30]  S. Grewal,et al.  Heterochromatin revisited , 2007, Nature Reviews Genetics.

[31]  J. Richter,et al.  Human let-7a miRNA blocks protein production on actively translating polyribosomes , 2006, Nature Structural &Molecular Biology.

[32]  Yang Yu,et al.  Evidence that microRNAs are associated with translating messenger RNAs in human cells , 2006, Nature Structural &Molecular Biology.

[33]  Pedro J. Batista,et al.  Analysis of the C. elegans Argonaute Family Reveals that Distinct Argonautes Act Sequentially during RNAi , 2006, Cell.

[34]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[35]  D. Corey,et al.  Involvement of AGO1 and AGO2 in mammalian transcriptional silencing , 2006, Nature Structural &Molecular Biology.

[36]  John J Rossi,et al.  Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells , 2006, Nature Structural &Molecular Biology.

[37]  N. Tolia,et al.  Argonaute Slicing Is Required for Heterochromatic Silencing and Spreading , 2006, Science.

[38]  Kuniaki Saito,et al.  Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. , 2006, Genes & development.

[39]  Vladimir Gvozdev,et al.  A Distinct Small RNA Pathway Silences Selfish Genetic Elements in the Germline , 2006, Science.

[40]  N. Lau,et al.  Characterization of the piRNA Complex from Rat Testes , 2006, Science.

[41]  P. Bork,et al.  mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. , 2006, Genes & development.

[42]  C. Sander,et al.  A novel class of small RNAs bind to MILI protein in mouse testes , 2006, Nature.

[43]  Ravi Sachidanandam,et al.  A germline-specific class of small RNAs binds mammalian Piwi proteins , 2006, Nature.

[44]  Toshiaki Watanabe,et al.  Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. , 2006, Genes & development.

[45]  Haifan Lin,et al.  A novel class of small RNAs in mouse spermatogenic cells. , 2006, Genes & development.

[46]  W. Filipowicz,et al.  Relief of microRNA-Mediated Translational Repression in Human Cells Subjected to Stress , 2006, Cell.

[47]  John G Doench,et al.  Recapitulation of short RNA-directed translational gene silencing in vitro. , 2006, Molecular cell.

[48]  H. Cerutti,et al.  On the origin and functions of RNA-mediated silencing: from protists to man , 2006, Current Genetics.

[49]  S. Cohen,et al.  Genome-Wide Analysis of mRNAs Regulated by Drosha and Argonaute Proteins in Drosophila melanogaster , 2006, Molecular and Cellular Biology.

[50]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[51]  Ligang Wu,et al.  MicroRNAs direct rapid deadenylation of mRNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Stefan L Ameres,et al.  Cleavage of the siRNA passenger strand during RISC assembly in human cells , 2006, EMBO reports.

[53]  G. Hannon,et al.  Control of translation and mRNA degradation by miRNAs and siRNAs. , 2006, Genes & development.

[54]  Jerry Pelletier,et al.  Short RNAs repress translation after initiation in mammalian cells. , 2006, Molecular cell.

[55]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[56]  M. Siomi,et al.  Slicer function of Drosophila Argonautes and its involvement in RISC formation. , 2005, Genes & development.

[57]  David I. K. Martin,et al.  MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  David P. Bartel,et al.  Passenger-Strand Cleavage Facilitates Assembly of siRNA into Ago2-Containing RNAi Enzyme Complexes , 2005, Cell.

[59]  R. Festenstein,et al.  Heterochromatin protein 1: a pervasive controlling influence , 2005, Cellular and Molecular Life Sciences CMLS.

[60]  W. Filipowicz,et al.  Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells , 2005, Science.

[61]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[62]  T. Tuschl,et al.  Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. , 2005, Molecular cell.

[63]  Qinghua Liu,et al.  Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. , 2005, Genes & development.

[64]  A. Denli,et al.  Normal microRNA Maturation and Germ-Line Stem Cell Maintenance Requires Loquacious, a Double-Stranded RNA-Binding Domain Protein , 2005, PLoS biology.

[65]  Kuniaki Saito,et al.  Processing of Pre-microRNAs by the Dicer-1–Loquacious Complex in Drosophila Cells , 2005, PLoS biology.

[66]  Ji-Joon Song,et al.  Purified Argonaute2 and an siRNA form recombinant human RISC , 2005, Nature Structural &Molecular Biology.

[67]  Thomas Tuschl,et al.  Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein , 2005, Nature.

[68]  D. Barford,et al.  Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex , 2005, Nature.

[69]  P. Sharp,et al.  Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. , 2005, Genes & development.

[70]  Shuang Huang,et al.  Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability , 2005, Cell.

[71]  Phillip D Zamore,et al.  Perspective: machines for RNAi. , 2005, Genes & development.

[72]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[73]  D. Barford,et al.  Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity , 2004, The EMBO journal.

[74]  P. Zamore,et al.  A Protein Sensor for siRNA Asymmetry , 2004, Science.

[75]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[76]  T. Sugiyama,et al.  RITS acts in cis to promote RNA interference–mediated transcriptional and post-transcriptional silencing , 2004, Nature Genetics.

[77]  Franck Vazquez,et al.  Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. , 2004, Molecular cell.

[78]  W. Filipowicz,et al.  Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. , 2004, RNA.

[79]  N. Rhind,et al.  A single Argonaute protein mediates both transcriptional and posttranscriptional silencing in Schizosaccharomyces pombe. , 2004, Genes & development.

[80]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[81]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[82]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[83]  Akira Ishizuka,et al.  Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. , 2004, Genes & development.

[84]  E. Ullu,et al.  RNA interference in protozoan parasites , 2004, Cellular microbiology.

[85]  Michael Sattler,et al.  Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain , 2004, Nature Structural &Molecular Biology.

[86]  P. Zamore,et al.  Kinetic analysis of the RNAi enzyme complex , 2004, Nature Structural &Molecular Biology.

[87]  D. Patel,et al.  Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain , 2004, Nature.

[88]  Franck Vazquez,et al.  The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. , 2004, Genes & development.

[89]  Phillip D Zamore,et al.  The RNA-Induced Silencing Complex Is a Mg2+-Dependent Endonuclease , 2004, Current Biology.

[90]  Thomas Tuschl,et al.  RISC is a 5' phosphomonoester-producing RNA endonuclease. , 2004, Genes & development.

[91]  T. Du,et al.  RISC Assembly Defects in the Drosophila RNAi Mutant armitage , 2004, Cell.

[92]  Thomas Tuschl,et al.  Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. , 2004, RNA.

[93]  Artemis G Hatzigeorgiou,et al.  miRNP:mRNA association in polyribosomes in a human neuronal cell line. , 2004, RNA.

[94]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[95]  Yoichi Matsuda,et al.  Mili, a mammalian member of piwi family gene, is essential for spermatogenesis , 2004, Development.

[96]  W. Filipowicz,et al.  Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer , 2004, EMBO reports.

[97]  Songtao Jia,et al.  RNAi-Mediated Targeting of Heterochromatin by the RITS Complex , 2004, Science.

[98]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[99]  Gary Ruvkun,et al.  Identification of many microRNAs that copurify with polyribosomes in mammalian neurons , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[100]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[101]  B. Simon,et al.  Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain , 2003, Nature.

[102]  Ming-Ming Zhou,et al.  Structure and conserved RNA binding of the PAZ domain , 2003, Nature.

[103]  Ji-Joon Song,et al.  The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes , 2003, Nature Structural Biology.

[104]  S. Jayasena,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[105]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[106]  R. Poethig,et al.  The Arabidopsis Heterochronic Gene ZIPPY Is an ARGONAUTE Family Member , 2003, Current Biology.

[107]  Xiaodong Wang,et al.  R2D2, a Bridge Between the Initiation and Effector Steps of the Drosophila RNAi Pathway , 2003, Science.

[108]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[109]  R. Aramayo,et al.  An argonaute-like protein is required for meiotic silencing. , 2003, Genetics.

[110]  Xiaofeng Cao,et al.  ARGONAUTE4 Control of Locus-Specific siRNA Accumulation and DNA and Histone Methylation , 2003, Science.

[111]  T. Fujisawa,et al.  Analysis of a piwi-Related Gene Implicates Small RNAs in Genome Rearrangement in Tetrahymena , 2002, Cell.

[112]  Ira M. Hall,et al.  Establishment and Maintenance of a Heterochromatin Domain , 2002, Science.

[113]  R. Plasterk,et al.  PPW-1, a PAZ/PIWI Protein Required for Efficient Germline RNAi, Is Defective in a Natural Isolate of C. elegans , 2002, Current Biology.

[114]  Ira M. Hall,et al.  Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi , 2002, Science.

[115]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[116]  W. Deng,et al.  miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. , 2002, Developmental cell.

[117]  P. Jeffrey,et al.  Regulation of Heterochromatic Silencing and Histone H 3 Lysine-9 Methylation by RNAi , 2002 .

[118]  P. Zamore,et al.  ATP Requirements and Small Interfering RNA Structure in the RNA Interference Pathway , 2001, Cell.

[119]  G. Hannon,et al.  C . elegans involved in developmental timing in Dicer functions in RNA interference and in synthesis of small RNA , 2001 .

[120]  A. Caudy,et al.  Argonaute2, a Link Between Genetic and Biochemical Analyses of RNAi , 2001, Science.

[121]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[122]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[123]  T. Tuschl,et al.  RNA interference is mediated by 21- and 22-nucleotide RNAs. , 2001, Genes & development.

[124]  A. Bateman,et al.  Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. , 2000, Trends in biochemical sciences.

[125]  G. Macino,et al.  Transcription: Gene silencing in worms and fungi , 2000, Nature.

[126]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[127]  Haifan Lin,et al.  piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. , 2000, Development.

[128]  V. Ambros,et al.  The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. , 1999, Developmental biology.

[129]  S. Jacobsen,et al.  Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. , 1999, Development.

[130]  Andrew Fire,et al.  The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans , 1999, Cell.

[131]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[132]  Haifan Lin,et al.  A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. , 1998, Genes & development.

[133]  G. Jürgens,et al.  Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis , 1998, The EMBO journal.

[134]  D. Bouchez,et al.  AGO1 defines a novel locus of Arabidopsis controlling leaf development , 1998, The EMBO journal.

[135]  G. Macino,et al.  Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[136]  A. Spradling,et al.  A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. , 1997, Development.

[137]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.