Emulation-based semiglobal output regulation of minimum phase nonlinear systems with sampled measurements

We investigate the semiglobal output regulation of minimum-phase single-input single-output nonlinear systems with sampled measurements. We proceed by emulation. We start by considering a continuous-time regulator, which solves the problem in the absence of sampling. Then, we consider sampled measurements and we model the overall system as a hybrid system. We show that the original continuous-case properties are preserved when the measurements are sampled provided that the maximum allowable transmission interval satisfies a given explicit bound.

[1]  Nathan van de Wouw,et al.  Networked Control Systems With Communication Constraints: Tradeoffs Between Transmission Intervals, Delays and Performance , 2010, IEEE Transactions on Automatic Control.

[2]  Nathan van de Wouw,et al.  Tracking Control for Nonlinear Networked Control Systems , 2014, IEEE Transactions on Automatic Control.

[3]  Christopher I. Byrnes,et al.  Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation , 2003, IEEE Trans. Autom. Control..

[4]  Huijun Gao,et al.  Network-Based ${{\cal H}}_{\!\!\!\infty }$ Output Tracking Control , 2008, IEEE Transactions on Automatic Control.

[5]  Jie Huang,et al.  Event-Triggered Global Robust Output Regulation for a Class of Nonlinear Systems , 2017, IEEE Transactions on Automatic Control.

[6]  Lorenzo Marconi,et al.  Remote tracking via encoded information for nonlinear systems , 2006, Syst. Control. Lett..

[7]  Joao P. Hespanha,et al.  Tracking control for sampled‐data systems with uncertain time‐varying sampling intervals and delays , 2009 .

[8]  Romain Postoyan,et al.  A framework for the observer design for networked control systems , 2010, Proceedings of the 2010 American Control Conference.

[9]  Christopher I. Byrnes,et al.  Nonlinear internal models for output regulation , 2004, IEEE Transactions on Automatic Control.

[10]  S. Monaco,et al.  On regulation under sampling , 1997, IEEE Trans. Autom. Control..

[11]  Ricardo G. Sanfelice,et al.  Hybrid Dynamical Systems: Modeling, Stability, and Robustness , 2012 .

[12]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[13]  Romain Postoyan,et al.  Qualitative parameter estimation for a class of relaxation oscillators , 2016 .

[14]  Dragan Nesic,et al.  A Lyapunov Proof of an Improved Maximum Allowable Transfer Interval for Networked Control Systems , 2007, IEEE Transactions on Automatic Control.

[15]  Antonio Tornambè,et al.  Robust ripple-free regulation and tracking for parameter-dependent sampled-data systems , 1996, IEEE Trans. Autom. Control..

[16]  Lorenzo Marconi,et al.  Semiglobal robust output regulation of minimum‐phase nonlinear systems , 2000 .

[17]  Nicolas Petit,et al.  Feedback Stabilization of Controlled Dynamical Systems , 2017 .

[18]  João Pedro Hespanha,et al.  A Survey of Recent Results in Networked Control Systems , 2007, Proceedings of the IEEE.

[19]  Tai C Yang,et al.  Networked control system: a brief survey , 2006 .

[20]  Chen Yul Network-Based H_∞ Output Tracking Control for a Type of Discrete Time Systems , 2014 .

[21]  Ricardo G. Sanfelice,et al.  State estimation of linear systems in the presence of sporadic measurements , 2016, Autom..

[22]  Dragan Nesic,et al.  A Unified Framework for Design and Analysis of Networked and Quantized Control Systems , 2009, IEEE Transactions on Automatic Control.

[23]  L. Marconi,et al.  Output Stabilization via Nonlinear Luenberger Observers , 2006, SIAM J. Control. Optim..

[24]  Dragan Nesic,et al.  Explicit Computation of the Sampling Period in Emulation of Controllers for Nonlinear Sampled-Data Systems , 2009, IEEE Transactions on Automatic Control.

[25]  Lorenzo Marconi,et al.  Robust Output Synchronization of a Network of Heterogeneous Nonlinear Agents Via Nonlinear Regulation Theory , 2014, IEEE Transactions on Automatic Control.