Neutron Laue diffraction study of the complex low-temperature magnetic behaviour of brownmillerite-type Ca2Fe2O5

The atomic and magnetic structure of brownmillerite Ca2Fe2O5 has been refined against single-crystal neutron Laue diffraction data collected at 300, 100 and 10 K under zero-field and low-magnetic field (35 Oe = 35 × 103/4π A m−1) conditions. Ca2Fe2O5 is a canted G-type antiferromagnet with Pcm′n′ symmetry, the magnetic moments on Fe being directed approximately along the crystallographic c axis at room temperature. The refinement results show clearly that this magnetic structure persists down to T = 10 K, despite a previous suggestion that an anomalous magnetic susceptibility enhancement observed in Ca2Fe2O5 single crystals between 40 and 140 K might signify a reorientation of the antiferromagnetic easy axis from c to a below 40 K. Alternative explanations for this susceptibility anomaly are considered in terms of the evidence for partial or short-range loss of order in the anomalous regime, possibly due to the presence of multiple competing sublattice interactions.

[1]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[2]  M. Sardar,et al.  Re-entrant magnetic phases in CaFeO3 nanoparticle , 2013 .

[3]  M. Ceretti,et al.  Dilatometric study of CaFeO2.5 single crystal , 2013, Journal of Thermal Analysis and Calorimetry.

[4]  C. Lamberti,et al.  Growth and characterization of large high quality brownmillerite CaFeO2.5 single crystals , 2012 .

[5]  A. Edwards Neutron Diffraction – Recent Applications to Chemical Structure Determination , 2011 .

[6]  M. Schmidt,et al.  Predicted and experimental crystal structures of ethyl-tert-butyl ether. , 2011, Acta crystallographica. Section B, Structural science.

[7]  M. Hagen,et al.  Echidna—the new high-resolution powder diffractometer being built at OPAL , 2006 .

[8]  G. McIntyre,et al.  High-speed neutron Laue diffraction comes of age , 2006 .

[9]  D. S. Filimonov,et al.  Oxygen-ion and electron conductivity in Sr2(Fe1−xGax)2O5 , 2006 .

[10]  J. Goodenough,et al.  Electronic behavior of three oxygen non-stoichiometric Fe4+/Fe3+ oxoperovskites , 2005 .

[11]  J. Goodenough,et al.  Rotation of magnetocrystalline easy axis in Ca2Fe2O5 , 2005 .

[12]  C. Lin,et al.  Floating zone growth and characterization of ca2fe2o5 single crystals , 2003 .

[13]  S. Hull,et al.  The crystal structures, microstructure and ionic conductivity of Ba2In2O5 and Ba(InxZr1-x)O3-x/2 , 2002 .

[14]  P. Woodward,et al.  Structural studies of charge disproportionation and magnetic order in CaFeO 3 , 2000 .

[15]  S. Hull,et al.  A neutron diffraction study of the temperature dependence of Ca2Fe2O5 , 1999 .

[16]  J. W. Campbell,et al.  LAUEGEN version 6.0 and INTLDM , 1998 .

[17]  J. W. Campbell LAUEGEN, an X-windows-based program for the processing of Laue diffraction data , 1995 .

[18]  Geick,et al.  Static magnetic properties of the many-sublattice antiferromagnet Ca2Fe2O5. , 1993, Physical review. B, Condensed matter.

[19]  R. Geick,et al.  Magnetic excitations in dicalcium ferrite , 1992 .

[20]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[21]  G. McIntyre,et al.  Integration of single‐crystal reflections using area multidetectors , 1988 .

[22]  M. Koizumi,et al.  Synthesis of a new perovskite CaFeO3 , 1970 .

[23]  Hiroshi Watanabe,et al.  Magnetic Structure of Ca2Fe2O5 , 1968 .

[24]  S. Shtrikman,et al.  Neutron diffraction study of dicalcium ferrite , 1967 .