Forecasting Brazilian output and its turning points in the presence of breaks: a comparison of linear and nonlinear models

This paper compares the forecasting performance of linear and nonlinear models under the presence of structural breaks for the Brazilian real GDP growth. The Markov switching models proposed by Hamilton (1989) and its generalized version by Lam (1990) are applied to quarterly GDP from 1975:1 to 2000:2 allowing for breaks at the Collor Plans. The probabilities of recessions are used to analyze the Brazilian business cycle. The in-sample and out-of-sample forecasting ability of growth rates of GDP of each model is compared with linear specifications and with a non-parametric rule. We find that the nonlinear models display a better forecasting performance than linear models. The specifications with the presence of structural breaks are important in obtaining a representation of the Brazilian business cycle and their inclusion improves considerably the models forecasting performance within and out-of-sample.