Properties of Reversible Diels-Alder Furan/Maleimide Polymer Networks as Function of Crosslink Density

Thermally reversible thermosets are synthesized based on furan functionalized polyketones crosslinked with (methylene-di-p-phenylene)bis-maleimide. The number of furan groups present along the backbone and the crosslinker/furan molar ratio are varied. According to DSC measurements the de-crosslinking temperature does not change significantly as function of furan intake and its molar ratio with the crosslinker. All samples show an almost complete recovery of storage and loss modulus. The crosslinked samples are recycled up to seven times without significant quality loss. This suggests that a change in conformation does not result in different visco-elastic behavior. The most crosslinked sample is able to fully repair itself within 1 hour. A number of low crosslink density materials additionally show a shape memory effect.

[1]  Alessandro Gandini,et al.  Application of the Diels−Alder Reaction to Polymers Bearing Furan Moieties. 2. Diels−Alder and Retro-Diels−Alder Reactions Involving Furan Rings in Some Styrene Copolymers , 1998 .

[2]  A. Kavitha,et al.  Atom-Transfer Radical Copolymerization of Furfuryl Methacrylate (FMA) and Methyl Methacrylate (MMA): A Thermally-Amendable Copolymer , 2007 .

[3]  Volker Abetz,et al.  A Simple Pathway toward Quantitative Modification of Polybutadiene: A New Approach to Thermoreversible Cross-Linking Rubber Comprising Supramolecular Hydrogen-Bonding Networks , 2005 .

[4]  W. V. Steele,et al.  Complete vapor phase assignment for the fundamental vibrations of furan, pyrrole and thiophene , 1994 .

[5]  M. Shibata,et al.  Synthesis and Properties of Trehalose-Based Flexible Polymers Prepared from Difurfurylidene Trehalose and Maleimide- Terminated Oligo(dimethylsiloxane) by Diels-Alder Reactions , 2010, Materials.

[6]  B. Adhikari,et al.  Reclamation and recycling of waste rubber , 2000 .

[7]  E. Goiti,et al.  Some observations on the copolymerization of styrene with furfuryl methacrylate , 2001 .

[8]  J. Canadell,et al.  Stereoisomeric effects in thermo-remendable polymer networks based on diels-alder crosslink reactions , 2010 .

[9]  S. Nutt,et al.  A Thermally Re-mendable Cross-Linked Polymeric Material , 2002, Science.

[10]  Youchun Zhang,et al.  Thermally Self-Healing Polymeric Materials : The Next Step to Recycling Thermoset Polymers? , 2009 .

[11]  V. Breedveld,et al.  Complementary Hydrogen-Bonded Thermoreversible Polymer Networks with Tunable Properties , 2008 .

[12]  S. Shinkai,et al.  Supramolecular Crosslinked Linear Poly(Trimethylene Iminium Trifluorosulfonimide) Polymer Gels Sensitive to Light and Thermal Stimuli , 2006 .

[13]  Robert E. Jensen,et al.  Room-temperature healing of a thermosetting polymer using the Diels-Alder reaction. , 2010, ACS applied materials & interfaces.

[14]  Alessandro Gandini,et al.  Diels−Alder Reactions with Novel Polymeric Dienes and Dienophiles: Synthesis of Reversibly Cross-Linked Elastomers , 2002 .

[15]  Ick Soo Kim,et al.  Preparation and characterization of polyketone (PK) fibrous membrane via electrospinning , 2010 .

[16]  M. Rong,et al.  A thermally remendable epoxy resin , 2009 .

[17]  A. Jen,et al.  Highly Efficient and Thermally Stable Electro‐optic Polymer from a Smartly Controlled Crosslinking Process , 2003 .

[18]  Bo Nyström,et al.  Effects of Polymer Concentration and Cross-Linking Density on Rheology of Chemically Cross-Linked Poly(vinyl alcohol) near the Gelation Threshold , 1996 .

[19]  Stephen Pickering,et al.  Recycling technologies for thermoset composite materials—current status , 2006 .

[20]  Alessandro Gandini,et al.  Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials , 2008 .

[21]  Leslie H. Sperling,et al.  The current status of interpenetrating polymer networks , 1996 .

[22]  Wim E. Hennink,et al.  Novel crosslinking methods to design hydrogels , 2002 .

[23]  J. Verdu,et al.  Fatigue behaviour of some temperature-resistant polymers , 1993, Journal of Materials Science.

[24]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[25]  C. Lamberti,et al.  Heterocycles oligomerization in acidic zeolites: a UV-visible and IR study , 1999 .

[26]  T. Saegusa,et al.  Reversible gelation of polyoxazoline by means of diels-alder reaction , 1990 .

[27]  L. Leibler,et al.  Dynamics of reversible networks , 1991 .

[28]  J. Lehn,et al.  Reversible Diels-Alder reactions for the generation of dynamic combinatorial libraries. , 2005, Organic letters.

[29]  H. Kwart,et al.  The reverse Diels-Alder or retrodiene reaction , 1968 .

[30]  Bernd Gotsmann,et al.  Exploiting Chemical Switching in a Diels–Alder Polymer for Nanoscale Probe Lithography and Data Storage , 2006 .

[31]  Fred Wudl,et al.  Synthesis and Characterization of a Single-Component Thermally Remendable Polymer Network: Staudinger and Stille Revisited , 2008 .

[32]  Mariko Watanabe,et al.  Synthesis and properties of readily recyclable polymers from bisfuranic terminated poly(ethylene adipate) and multi-maleimide linkers , 2006 .

[33]  David M. Collard,et al.  Cross-Linking and Modification of Poly(ethylene terephthalate-co-2,6-anthracenedicarboxylate) by Diels-Alder Reactions with Maleimides , 1999 .

[34]  M. P. Stevens,et al.  Thermally reversible crosslinking of polystyrene via the furan-maleimide diels-alder reaction , 1992 .

[35]  Mark D. Poliks,et al.  Characterization of thermally reworkable thermosets: materials for environmentally friendly processing and reuse , 2002 .

[36]  R. Derosa,et al.  Current State of Recycling Sheet Molding Compounds and Related Materials , 2005 .

[37]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.