Bayesian surprise attracts human attention

[1]  P. Cavanagh Visual cognition , 2011, Vision Research.

[2]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[3]  Souta Hidaka,et al.  Non-reversed motion perception induced by the spatiotemporal reversal of apparent motion sequences , 2010 .

[4]  G. Woodman,et al.  Directed forgetting versus directed remembering in visual working memory , 2010 .

[5]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[6]  T. Foulsham,et al.  What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. , 2008, Journal of vision.

[7]  C. Koch,et al.  Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. , 2008, Journal of vision.

[8]  Laurent Itti,et al.  Beyond bottom-up: Incorporating task-dependent influences into a computational model of spatial attention , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Antonio Torralba,et al.  Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. , 2006, Psychological review.

[10]  J. van Loon Network , 2006 .

[11]  P. König,et al.  Differences of monkey and human overt attention under natural conditions , 2006, Vision Research.

[12]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[13]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[14]  Pierre Baldi,et al.  A principled approach to detecting surprising events in video , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[15]  Iain D. Gilchrist,et al.  Visual correlates of fixation selection: effects of scale and time , 2005, Vision Research.

[16]  L. Itti,et al.  Modeling the influence of task on attention , 2005, Vision Research.

[17]  J. Gallant,et al.  Natural Stimulus Statistics Alter the Receptive Field Structure of V1 Neurons , 2004, The Journal of Neuroscience.

[18]  K. Yau,et al.  Calmodulin permanently associates with rat olfactory CNG channels under native conditions , 2004, Nature Neuroscience.

[19]  J. Wolfe,et al.  What attributes guide the deployment of visual attention and how do they do it? , 2004, Nature Reviews Neuroscience.

[20]  P. Lennie,et al.  Profound Contrast Adaptation Early in the Visual Pathway , 2004, Neuron.

[21]  Sameer Singh,et al.  Novelty detection: a review - part 1: statistical approaches , 2003, Signal Process..

[22]  J. Henderson Human gaze control during real-world scene perception , 2003, Trends in Cognitive Sciences.

[23]  R. Abrams,et al.  Motion Onset Captures Attention , 2003, Psychological science.

[24]  M. G. Evans,et al.  Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells , 2003, Nature Neuroscience.

[25]  Jillian H. Fecteau,et al.  Exploring the consequences of the previous trial , 2003, Nature Reviews Neuroscience.

[26]  W. K. Cullen,et al.  Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty , 2003, Nature Neuroscience.

[27]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[28]  I. Nelken,et al.  Processing of low-probability sounds by cortical neurons , 2003, Nature Neuroscience.

[29]  G. Rainer,et al.  Cognitive neuroscience: Neural mechanisms for detecting and remembering novel events , 2003, Nature Reviews Neuroscience.

[30]  Edwin Thompson Jaynes,et al.  Probability theory , 2003 .

[31]  E. Miller,et al.  Dynamics of neuronal sensitivity in visual cortex and local feature discrimination , 2002, Nature Neuroscience.

[32]  Derrick J. Parkhurst,et al.  Modeling the role of salience in the allocation of overt visual attention , 2002, Vision Research.

[33]  Y. Wu,et al.  Dynamic Textures , 2003, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[34]  J. M. Anderson,et al.  Responses of human frontal cortex to surprising events are predicted by formal associative learning theory , 2001, Nature Neuroscience.

[35]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[36]  J. Lusher,et al.  Dopamine D4 receptor gene (DRD4) is associated with Novelty Seeking (NS) and substance abuse: the saga continues . . . , 2001, Molecular Psychiatry.

[37]  S A Finney,et al.  Real-time data collection in Linux: A case study , 2001, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[38]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[39]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[40]  R. Masland,et al.  Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells , 2001, Nature Neuroscience.

[41]  Claudio M. Privitera,et al.  Algorithms for Defining Visual Regions-of-Interest: Comparison with Eye Fixations , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  A. Dickinson,et al.  Neuronal coding of prediction errors. , 2000, Annual review of neuroscience.

[43]  P Reinagel,et al.  Natural scene statistics at the centre of gaze. , 1999, Network.

[44]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[45]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[46]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[47]  T. Kurahashi,et al.  Mechanism of odorant adaptation in the olfactory receptor cell , 1997, Nature.

[48]  R. Knight Contribution of human hippocampal region to novelty detection , 1996, Nature.

[49]  J. R. Baker,et al.  The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[50]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[51]  R. Ebstein,et al.  Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking , 1996, Nature Genetics.

[52]  D. Murphy,et al.  Population and familial association between the D4 dopamine receptor gene and measures of Novelty Seeking , 1996, Nature Genetics.

[53]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[54]  J. Theeuwes Abrupt luminance change pops out; abrupt color change does not , 1995, Perception & psychophysics.

[55]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  R. T. Cox Probability, frequency and reasonable expectation , 1990 .

[57]  E. T. Jaynes,et al.  Probability Theory as Logic , 1990 .

[58]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[59]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[60]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[61]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[62]  H. Bandemer Savage, L. J.: Foundations of Statistics. Dover Publ., Inc,. New York 1972. 310 S. , 1974 .

[63]  L. Maffei,et al.  Neural Correlate of Perceptual Adaptation to Gratings , 1973, Science.

[64]  Vision Research , 1961, Nature.

[65]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[66]  George A. Lundberg,et al.  The Logic of Science , 1930 .