Strong, Ductile, and Thermally Stable bcc-Mg Nanolaminates

Magnesium has attracted attention worldwide because it is the lightest structural metal. However, a high strength-to-weight ratio remains its only attribute, since an intrinsic lack of strength, ductility and low melting temperature severely restricts practical applications of Mg. Through interface strains, the crystal structure of Mg can be transformed and stabilized from a simple hexagonal (hexagonal close packed hcp) to body center cubic (bcc) crystal structure at ambient pressures. We demonstrate that when introduced into a nanocomposite bcc Mg is far more ductile, 50% stronger, and retains its strength after extended exposure to 200 C, which is 0.5 times its homologous temperature. These findings reveal an alternative solution to obtaining lightweight metals critically needed for future energy efficiency and fuel savings.

[1]  I. Beyerlein,et al.  Strength and ductility with {101̄1} — {101̄2} double twinning in a magnesium alloy , 2016, Nature Communications.

[2]  W. Evans,et al.  Equation of state and high-pressure/high-temperature phase diagram of magnesium , 2014 .

[3]  Mostafa M. Abdalla,et al.  Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers , 2009 .

[4]  I. Beyerlein,et al.  High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces , 2013, Nature Communications.

[5]  H. Fraser,et al.  Phase stability of bcc Zr in Nb/Zr thin film multilayers , 2003 .

[6]  E. Popova,et al.  Thermal stability of nanocrystalline Nb produced by severe plastic deformation , 2006 .

[7]  V. Lubarda On the effective lattice parameter of binary alloys , 2003 .

[8]  Amit Misra,et al.  Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites , 2005 .

[9]  Fraser,et al.  Dimensionally induced structural transformations in titanium-aluminum multilayers. , 1996, Physical review letters.

[10]  I. Beyerlein,et al.  Grain neighbour effects on twin transmission in hexagonal close-packed materials , 2016, Nature Communications.

[11]  M. Gibson,et al.  Microstructure and mechanical behaviour of an elevated temperature Mg-rare earth based alloy , 2009 .

[12]  T. Geballe,et al.  NbZr multilayers. I. Structure and superconductivity , 1984 .

[13]  Gang Liu,et al.  Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers , 2012 .

[14]  Weizhong Han,et al.  Design of Radiation Tolerant Materials Via Interface Engineering , 2013, Advanced materials.

[15]  M. Isaenkova,et al.  The size effects in hardness of polycrystalline niobium , 2010 .

[16]  K. Chawla,et al.  Mechanical Behavior of Materials , 1998 .

[17]  I. Beyerlein,et al.  Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: Application to AZ31 magnesium alloy , 2016 .

[18]  D. Ando,et al.  A Lightweight Shape-Memory Magnesium Alloy. , 2016 .

[19]  R. Hoagland,et al.  Thermal stability of self-supported nanolayered Cu/Nb films , 2004 .

[20]  I. Beyerlein,et al.  Incorporating interface affected zones into crystal plasticity , 2015 .

[21]  R. Arróyave,et al.  Stabilization of bcc Mg in Thin Films at Ambient Pressure: Experimental Evidence and ab initio Calculations , 2013 .

[22]  M. Demkowicz,et al.  Defect-interface interactions , 2015 .

[23]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[24]  I. Beyerlein,et al.  First-principles study of the structure of Mg/Nb multilayers , 2014 .

[25]  Nick Birbilis,et al.  A high-specific-strength and corrosion-resistant magnesium alloy. , 2015, Nature materials.

[26]  S. Suwas,et al.  Mechanical Property of Pure Magnesium: From Orientation Perspective Pertaining to Deviation from Basal Orientation , 2015, Journal of Materials Engineering and Performance.

[27]  B. Mordike,et al.  Magnesium: Properties — applications — potential , 2001 .

[28]  M. Yoo Slip, twinning, and fracture in hexagonal close-packed metals , 1981 .

[29]  P. G. Partridge The crystallography and deformation modes of hexagonal close-packed metals , 1967 .

[30]  Zhaoxuan Wu,et al.  The origins of high hardening and low ductility in magnesium , 2015, Nature.

[31]  Xinghang Zhang,et al.  High strength Mg/Nb nanolayer composites , 2011 .

[32]  H. Fraser,et al.  Microstructural transitions in Titanium-Aluminum thin film multilayers , 1994 .

[33]  Krishan K. Chawla,et al.  Composite Materials: Science and Engineering , 1987 .

[34]  T. Pollock Weight Loss with Magnesium Alloys , 2010, Science.

[35]  D. Raabe,et al.  Design of Mg alloys: The effects of Li concentration on the structure and elastic properties in the Mg–Li binary system by first principles calculations , 2017 .

[36]  Holzapfel,et al.  High-pressure structural phase transition in Mg. , 1985, Physical review. B, Condensed matter.

[37]  I. Beyerlein,et al.  Engineering Interface Structures and Thermal Stabilities via SPD Processing in Bulk Nanostructured Metals , 2014, Scientific Reports.

[38]  T. Karabacak,et al.  Stress reduction in sputter deposited films using nanostructured compliant layers by high working-gas pressures , 2005 .

[39]  A. Minor,et al.  Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale , 2013, Proceedings of the National Academy of Sciences.

[40]  K. Hwang,et al.  Fracture in strain gradient elasticity , 1998 .

[41]  Xiang-Yang Liu,et al.  Layer size effect on the shock compression behavior of fcc–bcc nanolaminates , 2014 .

[42]  I. Beyerlein,et al.  Atomic-level study of twin nucleation from face-centered-cubic/body-centered-cubic interfaces in nanolamellar composites , 2012 .

[43]  Frans Spaepen,et al.  Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers , 2000 .

[44]  J. Ketterson,et al.  Synthesis of layered crystals of titanium silver , 1982 .

[45]  Ting Chen,et al.  High-pressure behavior and thermoelastic properties of niobium studied by in situ x-ray diffraction , 2014 .

[46]  I. Beyerlein,et al.  An interface facet driven Rayleigh instability in high-aspect-ratio bimetallic nanolayered composites , 2014 .

[47]  I. Beyerlein,et al.  Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates , 2016 .

[48]  R. Pippan,et al.  Anisotropic deformation characteristics of an ultrafine- and nanolamellar pearlitic steel , 2016 .

[49]  C. Koch,et al.  High hardness in a nanocrystalline Mg97Y2Zn1 alloy , 2011 .