Diversity and taxonomic revision of methanogens and other archaea in the intestinal tract of terrestrial arthropods

Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to non-methanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gene sequences and genomes of arthropod-associated archaea are scarce, reference databases lack resolution, and the names of many taxa are either not validly published or under-classified and require revision. Here, we investigated the diversity of archaea in a wide range of methane-emitting arthropods, combining phylogenomic analysis of isolates and metagenome-assembled genomes (MAGs) with amplicon sequencing of full-length 16S rRNA genes. Our results allowed us to describe numerous new species in hitherto undescribed taxa among the orders Methanobacteriales (Methanacia, Methanarmilla, Methanobaculum, Methanobinarius, Methanocatella, Methanoflexus, Methanorudis, and Methanovirga, all gen. nova), Methanomicrobiales (Methanofilum and Methanorbis, both gen. nova), Methanosarcinales (Methanofrustulum and Methanolapillus, both gen. nova), Methanomassiliicoccales (Methanomethylophilaceae fam. nov., Methanarcanum, Methanogranum, Methanomethylophilus, Methanomicula, Methanoplasma, Methanoprimaticola, all gen. nova), and the new family Bathycorpusculaceae (Bathycorpusculum gen. nov.). Reclassification of amplicon libraries from this and previous studies using this new taxonomic framework revealed that arthropods harbor only CO2 and methyl-reducing hydrogenotrophic methanogens. Numerous genus-level lineages appear to be present exclusively in arthropods, suggesting long evolutionary trajectories with their termite, cockroach, and millipede hosts, and a radiation into various microhabitats and ecological niches provided by their digestive tracts (e.g., hindgut compartments, gut wall, or anaerobic protists). The distribution patterns among the different host groups are often complex, indicating a mixed mode of transmission and a parallel evolution of invertebrate and vertebrate-associated lineages.

[1]  V. Beneš,et al.  Hydrogenotrophic methanogenesis is the key process in the obligately syntrophic consortium of the anaerobic ameba Pelomyxa schiedti , 2023, The ISME journal.

[2]  A. Slobodkin,et al.  Phenotypic and genomic characterization of Bathyarchaeum tardum gen. nov., sp. nov., a cultivated representative of the archaeal class Bathyarchaeia , 2023, Frontiers in microbiology.

[3]  B. Woodcroft,et al.  Isolation and characterisation of novel Methanocorpusculum species indicates the genus is ancestrally host-associated , 2023, BMC Biology.

[4]  X. Le Roux,et al.  Potential gross and net N2O production by the gut of different termite species are related to the abundance of nitrifier and denitrifier groups , 2022, Frontiers in Microbiomes.

[5]  Donovan H. Parks,et al.  SeqCode: a nomenclatural code for prokaryotes described from sequence data , 2022, Nature Microbiology.

[6]  Donovan H. Parks,et al.  GTDB-Tk v2: memory friendly classification with the genome taxonomy database , 2022, bioRxiv.

[7]  Donovan H. Parks,et al.  Development of the SeqCode: A proposed nomenclatural code for uncultivated prokaryotes with DNA sequences as type. , 2022, Systematic and applied microbiology.

[8]  S. Gribaldo,et al.  Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom , 2022, Nature Communications.

[9]  R. Finn,et al.  A catalogue of 1,167 genomes from the human gut archaeome , 2021, Nature microbiology.

[10]  T. Urich,et al.  Full Genome Sequence of a Methanomassiliicoccales Representative Enriched from Peat Soil , 2021, Microbiology resource announcements.

[11]  Nicholas D. Youngblut,et al.  Vertebrate host phylogeny influences gut archaeal diversity , 2021, Nature Microbiology.

[12]  G. Garrity,et al.  Valid publication of the names of forty-two phyla of prokaryotes. , 2021, International journal of systematic and evolutionary microbiology.

[13]  Donovan H. Parks,et al.  GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy , 2021, Nucleic Acids Res..

[14]  S. Gribaldo,et al.  Comparative genomic analysis of Methanimicrococcus blatticola provides insights into host adaptation in archaea and the evolution of methanogenesis , 2021, ISME Communications.

[15]  Y. Roisin,et al.  The functional evolution of termite gut microbiota , 2021, bioRxiv.

[16]  Donovan H. Parks,et al.  A standardized archaeal taxonomy for the Genome Taxonomy Database , 2021, Nature Microbiology.

[17]  Min Wang,et al.  An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants , 2021, Microbiome.

[18]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[19]  Evelien M. Adriaenssens,et al.  Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture , 2021, PeerJ.

[20]  A. Brune,et al.  Metabolic Potential for Reductive Acetogenesis and a Novel Energy-Converting [NiFe] Hydrogenase in Bathyarchaeia From Termite Guts – A Genome-Centric Analysis , 2020, bioRxiv.

[21]  A. Brune,et al.  The hydrogen threshold of obligately methyl-reducing methanogens , 2020, FEMS microbiology letters.

[22]  Donovan H. Parks,et al.  Evidence for non-methanogenic metabolisms in globally distributed archaeal clades basal to the Methanomassiliicoccales , 2020, bioRxiv.

[23]  S. Campanaro,et al.  New insights from the biogas microbiome by comprehensive genome-resolved metagenomics of nearly 1600 species originating from multiple anaerobic digesters , 2019, Biotechnology for Biofuels.

[24]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[25]  Patrick D Schloss,et al.  Reintroducing mothur: 10 Years Later , 2019, Applied and Environmental Microbiology.

[26]  A. Brune,et al.  Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites , 2019, PeerJ.

[27]  A. Brune Methanogenesis in the Digestive Tracts of Insects and Other Arthropods , 2019, Biogenesis of Hydrocarbons.

[28]  Donovan H. Parks,et al.  An evolving view of methane metabolism in the Archaea , 2019, Nature Reviews Microbiology.

[29]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[30]  D. Schneider,et al.  Comparative Genomic Analysis of Members of the Genera Methanosphaera and Methanobrevibacter Reveals Distinct Clades with Specific Potential Metabolic Functions , 2018, Archaea.

[31]  Donovan H. Parks,et al.  Culture- and metagenomics-enabled analyses of the Methanosphaera genus reveals their monophyletic origin and differentiation according to genome size , 2018, The ISME Journal.

[32]  Thijs J. G. Ettema,et al.  Genomes of two archaeal endosymbionts show convergent adaptations to an intracellular lifestyle , 2018, The ISME Journal.

[33]  Brent S. Pedersen,et al.  Bioconda: sustainable and comprehensive software distribution for the life sciences , 2018, Nature Methods.

[34]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[35]  T. Evans,et al.  Rampant Host Switching Shaped the Termite Gut Microbiome , 2018, Current Biology.

[36]  Thijs J. G. Ettema,et al.  Amplicon sequencing of the 16S-ITS-23S rRNA operon with long-read technology for improved phylogenetic classification of uncultured prokaryotes , 2017, bioRxiv.

[37]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[38]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[39]  Ben Nichols,et al.  Distributed under Creative Commons Cc-by 4.0 Vsearch: a Versatile Open Source Tool for Metagenomics , 2022 .

[40]  G. Martinez-Fernandez,et al.  Methanogen Diversity in Indigenous and Introduced Ruminant Species on the Tibetan Plateau , 2016, Archaea.

[41]  A. Brauman,et al.  Nitrous Oxide (N2O) Emissions by Termites: Does the Feeding Guild Matter? , 2015, PloS one.

[42]  P. B. Pope,et al.  Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range , 2015, Scientific Reports.

[43]  Katja Meuser,et al.  Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb). , 2015, Systematic and applied microbiology.

[44]  Hong Yang,et al.  Phylogenetic diversity of Archaea in the intestinal tract of termites from different lineages , 2015, Journal of basic microbiology.

[45]  R. Daniel,et al.  New Mode of Energy Metabolism in the Seventh Order of Methanogens as Revealed by Comparative Genome Analysis of “Candidatus Methanoplasma termitum” , 2014, Applied and Environmental Microbiology.

[46]  William Tottey,et al.  Archaea and the human gut: new beginning of an old story. , 2014, World journal of gastroenterology.

[47]  S. Gribaldo,et al.  Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine , 2014, BMC Genomics.

[48]  A. Brauman,et al.  Contribution of white grubs (Scarabaeidae: Coleoptera) to N2O emissions from tropical soils , 2014 .

[49]  L. Celis,et al.  Strategies to cope with methanogens in hydrogen producing UASB reactors: Community dynamics , 2014 .

[50]  K. Tajovský,et al.  Methane Production and Methanogenic Archaea in the Digestive Tracts of Millipedes (Diplopoda) , 2014, PloS one.

[51]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[52]  A. Brune Symbiotic digestion of lignocellulose in termite guts , 2014, Nature Reviews Microbiology.

[53]  H. Matsui,et al.  Comparative Analysis of the Methanogen Diversity in Horse and Pony by Using mcrA Gene and Archaeal 16S rRNA Gene Clone Libraries , 2014, Archaea.

[54]  Pelin Yilmaz,et al.  The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks , 2013, Nucleic Acids Res..

[55]  Jun Meng,et al.  Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses , 2013, The ISME Journal.

[56]  S. Haruta,et al.  Candidatus Methanogranum caenicola: a Novel Methanogen from the Anaerobic Digested Sludge, and Proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a Methanogenic Lineage of the Class Thermoplasmata , 2013, Microbes and environments.

[57]  S. Gribaldo,et al.  Genome Sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a Methanogenic Archaeon from the Human Gut Belonging to a Seventh Order of Methanogens , 2012, Journal of bacteriology.

[58]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[59]  Joaquín Dopazo,et al.  Qualimap: evaluating next-generation sequencing alignment data , 2012, Bioinform..

[60]  A. Brune,et al.  “Methanoplasmatales,” Thermoplasmatales-Related Archaea in Termite Guts and Other Environments, Are the Seventh Order of Methanogens , 2012, Applied and Environmental Microbiology.

[61]  W. de Souza,et al.  Microbial Community Diversity in the Gut of the South American Termite Cornitermes cumulans (Isoptera: Termitidae) , 2012, Microbial Ecology.

[62]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[63]  Elmar Pruesse,et al.  SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes , 2012, Bioinform..

[64]  R. Scheffrahn,et al.  High-Resolution Analysis of Gut Environment and Bacterial Microbiota Reveals Functional Compartmentation of the Gut in Wood-Feeding Higher Termites (Nasutitermes spp.) , 2012, Applied and Environmental Microbiology.

[65]  A. Brune,et al.  Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). , 2012, Environmental microbiology.

[66]  A. Brune,et al.  The Bacterial Community in the Gut of the Cockroach Shelfordella lateralis Reflects the Close Evolutionary Relatedness of Cockroaches and Termites , 2012, Applied and Environmental Microbiology.

[67]  Rob Knight,et al.  UCHIME improves sensitivity and speed of chimera detection , 2011, Bioinform..

[68]  M. Wagner,et al.  The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology , 2011, Current opinion in microbiology.

[69]  A. Brune,et al.  Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: a 15N-based approach , 2011 .

[70]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[71]  Yupa Hanboonsong,et al.  Termite mounds and dykes are biodiversity refuges in paddy fields in north-eastern Thailand , 2009, Environmental Conservation.

[72]  Peter H. Janssen,et al.  Structure of the Archaeal Community of the Rumen , 2008, Applied and Environmental Microbiology.

[73]  P. Forterre,et al.  Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota , 2008, Nature Reviews Microbiology.

[74]  A. Brune,et al.  Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes. , 2007, FEMS microbiology ecology.

[75]  P. Eggleton,et al.  Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches , 2007, Biology Letters.

[76]  J. Hackstein,et al.  The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics. , 2007, FEMS microbiology ecology.

[77]  Y. Kamagata,et al.  Phylogenetic Analysis and Fluorescence In Situ Hybridization Detection of Archaeal and Bacterial Endosymbionts in the Anaerobic Ciliate Trimyema Compressum , 2007, Microbial Ecology.

[78]  A. Brune,et al.  Expression profiles of fhs (FTHFS) genes support the hypothesis that spirochaetes dominate reductive acetogenesis in the hindgut of lower termites. , 2006, Environmental microbiology.

[79]  A. Brune,et al.  Nitrogen Mineralization, Ammonia Accumulation, and Emission of Gaseous NH3 by Soil-feeding Termites , 2006 .

[80]  W. F. Fricke,et al.  The Genome Sequence of Methanosphaera stadtmanae Reveals Why This Human Intestinal Archaeon Is Restricted to Methanol and H2 for Methane Formation and ATP Synthesis , 2006, Journal of bacteriology.

[81]  T. Mwabvu The density and distribution of millipedes on termite mounds in miombo woodland, Zimbabwe , 2005 .

[82]  U. Stingl,et al.  Structure and Topology of Microbial Communities in the Major Gut Compartments of Melolontha melolontha Larvae (Coleoptera: Scarabaeidae) , 2005, Applied and Environmental Microbiology.

[83]  J. Hackstein,et al.  A re-appraisal of the diversity of the methanogens associated with the rumen ciliates. , 2004, FEMS microbiology letters.

[84]  T. Kudo,et al.  Isolation and Detection of Methanogens from the Gut of Higher Termites , 2004 .

[85]  S. Shima,et al.  F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification , 2004, Archives of Microbiology.

[86]  T. Oshima,et al.  Endosymbiotic Methanobrevibacter species Living in Symbiotic Protists of the Termite Reticulitermes speratus Detected by Fluorescent In Situ Hybridization , 2004 .

[87]  Kamlesh Jangid,et al.  Comparison of 16S rRNA gene sequences of genus Methanobrevibacter , 2004, BMC Microbiology.

[88]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[89]  M. Friedrich,et al.  Microbial Community Structure in Midgut and Hindgut of the Humus-Feeding Larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae) , 2003, Applied and Environmental Microbiology.

[90]  T. Lueders,et al.  Axial Differences in Community Structure ofCrenarchaeota and Euryarchaeota in the Highly Compartmentalized Gut of the Soil-Feeding TermiteCubitermes orthognathus , 2001, Applied and Environmental Microbiology.

[91]  D. Bignell,et al.  Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera , 2001, Insectes Sociaux.

[92]  J. Hackstein,et al.  Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. , 2000, International journal of systematic and evolutionary microbiology.

[93]  T. Kudo,et al.  Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. , 2000, FEMS microbiology ecology.

[94]  A. Brune,et al.  Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. , 2000, Environmental microbiology.

[95]  J. Leunissen,et al.  Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. , 2000, Molecular biology and evolution.

[96]  T. Kudo,et al.  Phylogenetic relationships of symbiotic methanogens in diverse termites. , 1999, FEMS microbiology letters.

[97]  K. Ushida,et al.  Isolation of Methanobrevibacter sp. as a ciliate-associated ruminal methanogen. , 1999, The Journal of general and applied microbiology.

[98]  J. Leadbetter,et al.  Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts , 1998, Archives of Microbiology.

[99]  Jared R. Leadbetter,et al.  Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes , 1996, Applied and environmental microbiology.

[100]  T. Kudo,et al.  Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. , 1995, FEMS microbiology letters.

[101]  J. Hackstein,et al.  Methane production in terrestrial arthropods. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[102]  H. Gijzen,et al.  Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut , 1991, Applied and environmental microbiology.

[103]  S. Zinder,et al.  Association of methanogenic bacteria with flagellated protozoa from a termite hindgut , 1987, Current Microbiology.

[104]  T. Miller,et al.  Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen , 1985, Archives of Microbiology.

[105]  J. Breznak,et al.  Nutrition and Growth Characteristics of Trichomitopsis termopsidis, a Cellulolytic Protozoan from Termites , 1985, Applied and environmental microbiology.

[106]  T. Urich,et al.  Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. , 2016, FEMS microbiology ecology.

[107]  J. Hackstein Endo)symbiotic methanogenic archaea , 2010 .

[108]  T. Fenchel,et al.  Free-Living Protozoa with Endosymbiotic Methanogens , 2010 .

[109]  J. Hackstein,et al.  Methanogens in the Gastro-Intestinal Tract of Animals , 2010 .

[110]  A. Brune Methanogens in the Digestive Tract of Termites , 2010 .

[111]  M. Ohkuma,et al.  Identification of Endosymbiotic Methanogen and Ectosymbiotic Spirochetes of Gut Protists of the Termite Coptotermes formosanus. , 2008, Microbes and environments.