Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies

Humanity already possesses the fundamental scientific, technical, and industrial know-how to solve the carbon and climate problem for the next half-century. A portfolio of technologies now exists to meet the world's energy needs over the next 50 years and limit atmospheric CO2 to a trajectory that avoids a doubling of the preindustrial concentration. Every element in this portfolio has passed beyond the laboratory bench and demonstration project; many are already implemented somewhere at full industrial scale. Although no element is a credible candidate for doing the entire job (or even half the job) by itself, the portfolio as a whole is large enough that not every element has to be used.

[1]  J. Rotmans,et al.  Global Biogeochemical Cycles , 1999 .

[2]  Zhang Bei-wen,et al.  Horns Rev offshore wind farm , 2006 .

[3]  Alfred J. Cavallo,et al.  High-Capacity Factor Wind Energy Systems , 1995 .

[4]  Pierre Desprairies,et al.  World Energy Outlook , 1977 .

[5]  Rattan Lal,et al.  Land Use, Land-Use Change and Forestry , 2015 .

[6]  Thomas E. Drennen,et al.  Renewable Energy: Sources for Fuels and Electricity , 1994 .

[7]  K. Ford,et al.  Efficient use of energy , 1979 .

[8]  Jae Edmonds,et al.  The economics of stabilizing atmospheric CO2 concentrations , 1995 .

[9]  David W. Keith,et al.  CO2 Capture from the Air: Technology Assessment and Implications for Climate Policy , 2002 .

[10]  Richard A. Birdsey,et al.  Productivity of America's forests and climate change , 1995 .

[11]  Pekka E. Kauppi,et al.  Technological and Economic Potential of Options to Enhance , Maintain , and Manage Biological Carbon Reservoirs and Geoengineering , 2022 .

[12]  M. van Noordwijk,et al.  Agricultural options for mitigation of greenhouse gas emissions , 1996 .

[13]  Robert J. Scholes,et al.  The Carbon Cycle and Atmospheric Carbon Dioxide , 2001 .

[14]  J. Houghton Climate change 1994 : radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios , 1995 .

[15]  Leen Hordijk,et al.  Climate OptiOns for the Long-term (COOL) - Synthesis Report , 2001 .

[16]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[17]  B. O’Neill,et al.  Dangerous Climate Impacts and the Kyoto Protocol , 2002, Science.

[18]  Nicholas Jenkins,et al.  Energy: the changing climate , 2001 .

[19]  Andrew Miller,et al.  Energy Revolution: policies for a sustainable future , 2003 .

[20]  A. Mather,et al.  Global Forest Resources Assessment 2000 Main Report: FAO Forestry Paper 140, FAO, Rome, 2001, xxvii+479pp, price $40.00, ISBN 92 5 104642-5, ISSN 0258-6150 , 2003 .

[21]  Marilyn Brown Scenarios of U.S. Carbon Reductions: Potential Impacts of Energy-Efficient and Low-Carbon Technologies by 2010 and Beyond , 1997 .

[22]  Ralph F. Keeling,et al.  THE CHANGE IN OCEANIC 02 INVENTORY ASSOCIATED WITH RECENT GLOBAL WARMING , 2022 .

[23]  T. R. Nelson,et al.  Estimates of COâ emissions from fossil fuel burning and cement manufacturing, based on the United Nations energy statistics and the US Bureau of Mines cement manufacturing data , 1989 .

[24]  Eric D. Larson,et al.  A comparison of direct and indirect liquefaction technologies for making fluid fuels from coal , 2003 .

[25]  John V. Mitchell,et al.  The New Economy of Oil: Impacts on Business, Geopolitics and Society. , 2001 .

[26]  J. Edmonds,et al.  Economic and environmental choices in the stabilization of atmospheric CO2 concentrations , 1996, Nature.

[27]  Atul K. Jain,et al.  Stability: Energy for a Greenhouse Planet Advanced Technology Paths to Global Climate , 2008 .

[28]  Bert Bolin,et al.  The carbon cycle. , 1970, Scientific American.

[29]  Richard E. Wilson,et al.  Nuclear Energy: Principles, Practices, and Prospects , 1997 .

[30]  Judith Gurney BP Statistical Review of World Energy , 1985 .

[31]  C. Le Quéré,et al.  Natural processes regulating the ocean uptake of CO2 , 2004 .

[32]  Gary Shaffer,et al.  Biogeochemical cycling in the global ocean: 2. New production, Redfield ratios, and remineralization in the organic pump , 1996 .

[33]  Alexei G. Sankovski,et al.  Special report on emissions scenarios , 2000 .

[34]  Gary Shaffer,et al.  Biogeochemical cycling in the global ocean: 1. A new, analytical model with continuous vertical resolution and high‐latitude dynamics , 1995 .

[35]  Fortunat Joos,et al.  Use of a simple model for studying oceanic tracer distributions and the global carbon cycle , 1992 .

[36]  Arthur H. Rosenfeld,et al.  ENGINEERING-ECONOMIC STUDIES OF ENERGY TECHNOLOGIES TO REDUCE GREENHOUSE GAS EMISSIONS: Opportunities and Challenges , 1998 .

[37]  Nebojsa Nakicenovic,et al.  Technologies, Policies, and Measures for Mitigating Climate Change , 1996 .

[38]  Lee Schipper,et al.  INDICATORS OF ENERGY USE AND CARBON EMISSIONS: Explaining the Energy Economy Link , 2001 .

[39]  Joanna Isobel House,et al.  Climate change 2001 : synthesis report , 2001 .

[40]  Peter J. G. Pearson,et al.  Assessment of technological options to address climate change: a report for the Prime Minister’s Strategy Unit , 2002 .

[41]  Erwin Panofsky,et al.  Two Volumes , 2005 .