Homogeneous Time-Varying Systems: Robustness Analysis

The problem of stability robustness with respect to time-varying perturbations of a given frequency spectrum is studied applying homogeneity framework. The notion of finite-time stability over time intervals of finite length, i.e., short-finite-time stability, is introduced and used for that purpose. The results are applied to analyze the Super-Twisting Algorithm (STA) behavior under time-varying perturbations. Some simulation examples illustrate these robustness properties.

[1]  Yannick Aoustin,et al.  Finite Time Stabilization of a Perturbed Double Integrator—Part I: Continuous Sliding Mode-Based Output Feedback Synthesis , 2011, IEEE Transactions on Automatic Control.

[2]  E. Ryan Universal stabilization of a class of nonlinear systems with homogeneous vector fields , 1995 .

[3]  L. Grüne Homogeneous state feedback stabilization of homogeneous systems , 2000, CDC.

[4]  L. Weiss,et al.  ON THE STABILITY OF SYSTEMS DEFINED OVER A FINITE TIME INTERVAL. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Y. Orlov,et al.  Finite time stability of homogeneous switched systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[6]  Andrey Polyakov,et al.  Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems , 2012, IEEE Transactions on Automatic Control.

[7]  Willie L. Roberts,et al.  On systems of ordinary differential equations , 1961 .

[8]  W. Perruquetti,et al.  Homogeneous differentiator design using implicit Lyapunov Function method , 2014, 2014 European Control Conference (ECC).

[9]  E. Moulay,et al.  Finite time stability and stabilization of a class of continuous systems , 2006 .

[10]  Wilfrid Perruquetti,et al.  Homogeneous approximations and local observer design , 2013 .

[11]  Dennis S. Bernstein,et al.  Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..

[12]  Yiguang Hong,et al.  Finite-time stabilization and stabilizability of a class of controllable systems , 2002, Syst. Control. Lett..

[13]  Yiguang Hong,et al.  Hinfinity control, stabilization, and input-output stability of nonlinear systems with homogeneous properties , 2001, Autom..

[14]  Leonid M. Fridman,et al.  Homogeneity Based Uniform Stability Analysis for Time-Varying Systems , 2016, IEEE Transactions on Automatic Control.

[15]  P. Dorato SHORT-TIME STABILITY IN LINEAR TIME-VARYING SYSTEMS , 1961 .

[16]  Andrey Polyakov,et al.  Verification of ISS, iISS and IOSS properties applying weighted homogeneity , 2013, Syst. Control. Lett..

[17]  Y. ORLOV,et al.  Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems , 2004, SIAM J. Control. Optim..

[18]  Liang Du,et al.  Finite-time stability for time-varying nonlinear dynamical systems , 2008, 2008 American Control Conference.

[19]  Alessandro Astolfi,et al.  Homogeneous Approximation, Recursive Observer Design, and Output Feedback , 2008, SIAM J. Control. Optim..

[20]  Peter Dorato,et al.  An Overview of Finite-Time Stability , 2006 .

[21]  Leonid M. Fridman,et al.  Uniform Robust Exact Differentiator , 2011, IEEE Trans. Autom. Control..

[22]  Wassim M. Haddad,et al.  Finite-Time Stabilization of Nonlinear Dynamical Systems via Control Vector Lyapunov Functions , 2007, ACC.

[23]  Dirk Aeyels,et al.  Averaging Results and the Study of Uniform Asymptotic Stability of Homogeneous Differential Equations That Are Not Fast Time-Varying , 1999 .

[24]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[25]  Lars Grüne,et al.  Homogeneous State Feedback Stabilization of Homogenous Systems , 2000, SIAM J. Control. Optim..

[26]  L. Rosier Homogeneous Lyapunov function for homogeneous continuous vector field , 1992 .

[27]  A. Bacciotti,et al.  Liapunov functions and stability in control theory , 2001 .

[28]  R. Sepulchre,et al.  Stabilizability Does Not Imply Homogeneous Stabilizability for Controllable Homogeneous Systems , 1996 .

[29]  Wilfrid Perruquetti,et al.  On practical stability with the settling time via vector norms , 1995 .

[30]  N. I. Morozov,et al.  Stability of motion over a finite interval of time , 1978 .

[31]  Henry Hermes,et al.  Nilpotent and High-Order Approximations of Vector Field Systems , 1991, SIAM Rev..

[32]  Emilio Roxin,et al.  On finite stability in control systems , 1966 .

[33]  Jaime A. Moreno,et al.  Strict Lyapunov Functions for the Super-Twisting Algorithm , 2012, IEEE Transactions on Automatic Control.