A Fixed-Length Subset Genetic Algorithm for the p-Median Problem

In this paper, we review some classical recombination operations and devise new heuristic recombinations for the fixed-length subset. Our experimental results on the classical p-median problem indicate that our method is superior and very close to the optimal solution.

[1]  Robert Carbone,et al.  Public Facilities Location Under Stochastic Demand , 1974 .

[2]  Erik Rolland,et al.  VisOpt: a visual interactive optimization tool for P-median problems , 1999, Decis. Support Syst..

[3]  G. Nemhauser,et al.  Integer Programming , 2020 .

[4]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[5]  Giovanni Righini A double annealing algorithm for discrete location/allocation problems☆ , 1994 .

[6]  Arie Tamir,et al.  An O(pn2) algorithm for the p-median and related problems on tree graphs , 1996, Oper. Res. Lett..

[7]  Lawrence W. Lan,et al.  Genetic clustering algorithms , 2001, Eur. J. Oper. Res..

[8]  R. Swain A Parametric Decomposition Approach for the Solution of Uncapacitated Location Problems , 1974 .

[9]  S. Viswanathan A new approach for solving the P-median problem in group technology , 1996 .

[10]  Vijay V. Vazirani,et al.  Approximation algorithms for metric facility location and k-Median problems using the primal-dual schema and Lagrangian relaxation , 2001, JACM.

[11]  R. E. Wendell,et al.  Optimal Locations on a Network , 1973 .

[12]  Pierre Hansen,et al.  Variable Neighborhood Decomposition Search , 1998, J. Heuristics.

[13]  José Muñoz-Pérez,et al.  Neural Network Algorithms for the p-Median Problem , 2003, ESANN.

[14]  Kenneth E. Rosing,et al.  An Empirical Investigation of the Effectiveness of a Vertex Substitution Heuristic , 1997 .

[15]  Sudipto Guha,et al.  Rounding via Trees : Deterministic Approximation Algorithms forGroup , 1998 .

[16]  Roberto D. Galvão,et al.  A Dual-Bounded Algorithm for the p-Median Problem , 1980, Oper. Res..

[17]  S. L. HAKIMIt AN ALGORITHMIC APPROACH TO NETWORK LOCATION PROBLEMS. , 1979 .

[18]  H. Frank,et al.  Optimum Locations on a Graph with Probabilistic Demands , 1966, Oper. Res..

[19]  Ramgopal R. Mettu,et al.  Approximation algorithms for np -hard clustering problems , 2002 .

[20]  J. Krarup,et al.  Sharp Lower Bounds and Efficient Algorithms for the Simple Plant Location Problem , 1977 .

[21]  Rajan Batta,et al.  Analysis of centroid aggregation for the Euclidean distance p-median problem , 1999, Eur. J. Oper. Res..

[22]  Vladimir Estivill-Castro,et al.  Hybrid Genetic Algorithm for Solving the p-Median Problem , 1998, SEAL.

[23]  Kazuyoshi Hidaka,et al.  Simulation-based approach to the warehouse location problem for a large-scale real instance , 1997, WSC '97.

[24]  Alfred A. Kuehn,et al.  A Heuristic Program for Locating Warehouses , 1963 .

[25]  Alireza Ardalan A Comparison of Heuristic Methods for Service Facility Locations , 1988 .

[26]  G. Ross,et al.  Modeling Facility Location Problems as Generalized Assignment Problems , 1977 .

[27]  Edson L. F. Senne,et al.  Complementary Approaches for a Clustering Problem , 2002 .

[28]  Jean-Philippe Vial,et al.  Proximal ACCPM, a Cutting Plane Method for Column Generation and Lagrangian Relaxation: Application to the P-Median Problem , 2002 .

[29]  Sudipto Guha,et al.  Improved combinatorial algorithms for the facility location and k-median problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[30]  F. E. Maranzana,et al.  On the Location of Supply Points to Minimize Transport Costs , 1964 .

[31]  B. M. Khumawala An efficient heuristic procedure for the uncapacitated warehouse location problem , 1973 .

[32]  Frank Plastria,et al.  On the choice of aggregation points for continuousp-median problems: A case for the gravity centre , 2001 .

[33]  Pierre Hansen,et al.  A Plant and Warehouse Location Problem , 1977 .

[34]  Pertti Järvinen,et al.  Technical Note - A Branch-and-Bound Algorithm for Seeking the P-Median , 1972, Oper. Res..

[35]  P. Hansen,et al.  Variable neighborhood search for the p-median , 1997 .

[36]  Dominique Peeters,et al.  A comparison of two dual-based procedures for solving the p-median problem , 1985 .

[37]  Amin Saberi,et al.  A new greedy approach for facility location problems , 2002, STOC '02.

[38]  R. A. Whitaker A Tight Bound Drop Exchange Algorithm for Solving the p Median Problem , 1981 .

[39]  Nicos Christofides,et al.  Capacitated clustering problems by hybrid simulated annealing and tabu search , 1994 .

[40]  David K. Smith,et al.  A Comparison of Two Heuristic Methods for the p‐Median Problem with and without Maximum Distance Constraints , 1991 .

[41]  Saïd Salhi,et al.  Defining tabu list size and aspiration criterion within tabu search methods , 2002, Comput. Oper. Res..

[42]  R.M.J. Heuts,et al.  A modified simple heuristic for the p-median problem, with facilities design applications , 2005 .

[43]  Sudipto Guha,et al.  A constant-factor approximation algorithm for the k-median problem (extended abstract) , 1999, STOC '99.

[44]  T. Klastorin The p-Median Problem for Cluster Analysis: A Comparative Test Using the Mixture Model Approach , 1985 .

[45]  Pitu B. Mirchandani,et al.  Location on networks : theory and algorithms , 1979 .

[46]  K E Rosing,et al.  The Robustness of Two Common Heuristics for the p-Median Problem , 1979 .

[47]  E. Kay,et al.  Graph Theory. An Algorithmic Approach , 1975 .

[48]  Nelio Domingues Pizzolato,et al.  A heuristic for large-sizep-median location problems with application to school location , 1994, Ann. Oper. Res..

[49]  Roberto Baldacci,et al.  A Bionomic Approach to the Capacitated p-Median Problem , 1998, J. Heuristics.

[50]  Cabot A.Victor,et al.  A Network Flow Solution to a Rectilinear Distance Facility Location Problem , 1970 .

[51]  Roy E. Marsten,et al.  An Algorithm for Finding Almost All Of The Medians of a Network , 1972 .

[52]  B. M. Khumawala An Efficient Branch and Bound Algorithm for the Warehouse Location Problem , 1972 .

[53]  Roberto D. Galvão,et al.  A graph theoretical bound for the p-median problem , 1981 .

[54]  M. Rao,et al.  An Algorithm for the M-Median Plant Location Problem , 1974 .

[55]  Richard L. Church,et al.  COBRA: A New Formulation of the Classic p-Median Location Problem , 2003, Ann. Oper. Res..

[56]  David A. Schilling,et al.  Network distance characteristics that affect computational effort in p-median location problems , 2000, Eur. J. Oper. Res..

[57]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[58]  Luiz Antonio Nogueira Lorena,et al.  A branch-and-price approach to p-median location problems , 2005, Comput. Oper. Res..

[59]  R. A. Whitaker Some Interchange Algorithms for Median Location Problems , 1982 .

[60]  B. M. Khumawala,et al.  An Efficient Branch and Bound Algorithm for the Capacitated Warehouse Location Problem , 1977 .

[61]  C. Revelle,et al.  Heuristic concentration: Two stage solution construction , 1997 .

[62]  T. Cheung,et al.  A new heuristic approach for the P-median problem , 1997 .

[63]  Alberto Ceselli,et al.  Two exact algorithms for the capacitated p-median problem , 2003, 4OR.

[64]  Éric D. Taillard,et al.  Heuristic Methods for Large Centroid Clustering Problems , 2003, J. Heuristics.

[65]  S. L. Hakimi,et al.  Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph , 1964 .

[66]  Jeffrey Scott Vitter,et al.  Approximation Algorithms for Geometric Median Problems , 1992, Inf. Process. Lett..

[67]  Lazaros P. Mavrides An Indirect Method for the Generalized k-Median Problem Applied to Lock-Box Location , 1979 .

[68]  M. E. Captivo Fast primal and dual heuristics for the p-median location problem , 1991 .

[69]  Dorit S. Hochbaum,et al.  Heuristics for the fixed cost median problem , 1982, Math. Program..

[70]  Pierre Hansen,et al.  Cooperative Parallel Variable Neighborhood Search for the p-Median , 2004, J. Heuristics.

[71]  J. Beasley A note on solving large p-median problems , 1985 .

[72]  Alex Alves Freitas,et al.  A Genetic Algorithm for Solving a Capacitated p-Median Problem , 2004, Numerical Algorithms.

[73]  T. B. Boffey,et al.  p-Medians and Multi-Medians , 1984 .

[74]  R. Ravi,et al.  Approximation Algorithms for Network Problems , 1998 .

[75]  Samir Khuller,et al.  Greedy strikes back: improved facility location algorithms , 1998, SODA '98.

[76]  M. John Hodgson,et al.  Heuristic concentration for the p-median: an example demonstrating how and why it works , 2002, Comput. Oper. Res..

[77]  Andrew V. Goldberg,et al.  Improved approximation algorithms for network design problems , 1994, SODA '94.

[78]  Satish Rao,et al.  Approximation schemes for Euclidean k-medians and related problems , 1998, STOC '98.

[79]  Vijay V. Vazirani,et al.  Primal-dual approximation algorithms for metric facility location and k-median problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[80]  K. E. Rosing,et al.  The p-Median and its Linear Programming Relaxation: An Approach to Large Problems , 1979 .

[81]  Lutz Morgenstern A note on Galvao's "A graph theoretical bound for the p-median problem" , 1983 .

[82]  D. Erlenkotter Facility Location with Price-Sensitive Demands: Private, Public, and Quasi-Public , 1977 .

[83]  T. L. Ray,et al.  A Branch-Bound Algorithm for Plant Location , 1966, Oper. Res..

[84]  Roberto D. Galvão,et al.  Rejoinder to “A note on Galvão's a graph theoretical bound for the p-median problem” , 1984 .

[85]  Giovanni Righini,et al.  A branch‐and‐price algorithm for the capacitated p‐median problem , 2005, Networks.

[86]  R. T. Wong,et al.  `Multidimensional' extensions and a nested dual approach for the m-median problem , 1985 .

[87]  S. Salhi A perturbation heuristic for a class of location problems , 1997 .

[88]  M. Goodchild,et al.  Discrete space location-allocation solutions from genetic algorithms , 1986 .

[89]  Belén Melián-Batista,et al.  Parallelization of the scatter search for the p-median problem , 2003, Parallel Comput..

[90]  Belén Melián-Batista,et al.  The Parallel Variable Neighborhood Search for the p-Median Problem , 2002, J. Heuristics.

[91]  James G. Morris,et al.  On the Extent to Which Certain Fixed-Charge Depot Location Problems can be Solved by LP , 1978 .

[92]  Micha Sharir,et al.  Efficient algorithms for geometric optimization , 1998, CSUR.

[93]  Basheer M. Khumawala,et al.  Note---A Note on El-Shaieb's New Algorithm for Locating Sources Among Destinations , 1974 .

[94]  R. A. Whitaker,et al.  A Fast Algorithm For The Greedy Interchange For Large-Scale Clustering And Median Location Problems , 1983 .

[95]  Paul J. Densham,et al.  A more efficient heuristic for solving largep-median problems , 1992 .

[96]  Michelle R. Hribar,et al.  A dynamic programming heuristic for the P-median problem , 1997 .

[97]  R. D. Galvão,et al.  A method for solving to optimality uncapacitated location problems , 1990 .

[98]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[99]  Charles S. ReVelle,et al.  The Location of Emergency Service Facilities , 1971, Oper. Res..

[100]  Rajmohan Rajaraman,et al.  Analysis of a local search heuristic for facility location problems , 2000, SODA '98.

[101]  A. Klose A Branch and Bound Algorithm for An Uncapacitated Facility Location Problem with a Side Constraint , 1998 .

[102]  Nicos Christofides,et al.  A tree search algorithm for the p-median problem , 1982 .

[103]  Pierre Hansen,et al.  Heuristic solution of the multisource Weber problem as a p-median problem , 1996, Oper. Res. Lett..

[104]  Fernando Y. Chiyoshi,et al.  A statistical analysis of simulated annealing applied to the p-median problem , 2000, Ann. Oper. Res..

[105]  P. França,et al.  An adaptive tabu search algorithm for the capacitated clustering problem , 1999 .

[106]  Graciano Sá,et al.  Branch-and-Bound and Approximate Solutions to the Capacitated Plant-Location Problem , 1969, Oper. Res..

[107]  David B. Shmoys,et al.  Approximation algorithms for facility location problems , 2000, APPROX.

[108]  Ismael R. de Farias A family of facets for the uncapacitated p-median polytope , 2001, Oper. Res. Lett..

[109]  José Muñoz-Pérez,et al.  An Efficient Neural Network Algorithm for the p-Median Problem , 2002, IBERAMIA.

[110]  R. Church,et al.  Computational Procedures for Location Problems on Stochastic Networks , 1983 .

[111]  Charles S. Revelle,et al.  A gamma heuristic for the p-median problem , 1999, Eur. J. Oper. Res..

[112]  Luiz Antonio Nogueira Lorena,et al.  Lagrangean/Surrogate Heuristics for p-Median Problems , 2000 .

[113]  J. Current,et al.  Heuristic concentration and Tabu search: A head to head comparison , 1998 .

[114]  Donald Erlenkotter,et al.  A Dual-Based Procedure for Uncapacitated Facility Location , 1978, Oper. Res..

[115]  C. Greg Plaxton,et al.  Approximation algorithms for hierarchical location problems , 2003, STOC '03.

[116]  James F. Campbell Hub Location and the p-Hub Median Problem , 1996, Oper. Res..

[117]  Roger L. Wainwright,et al.  Approximation techniques for variations of the p-median problem , 1995, SAC '95.

[118]  E. Hillsman The p-Median Structure as a Unified Linear Model for Location—Allocation Analysis , 1984 .

[119]  Luiz Antonio Nogueira Lorena,et al.  Local Search Heuristics for Capacitated p-Median Problems , 2003 .

[120]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[121]  Nicholas J. Radcliffe,et al.  Genetic Set Recombination , 1992, FOGA.

[122]  M. John Hodgson,et al.  Aggregation and Surrogation Error in the p-Median Model , 2003, Ann. Oper. Res..

[123]  A. M. El-Shaieb,et al.  A New Algorithm for Locating Sources Among Destinations , 1973 .

[124]  J. Beasley Lagrangean heuristics for location problems , 1993 .

[125]  David P. Williamson,et al.  Improved approximation algorithms for capacitated facility location problems , 1999, IPCO.

[126]  Kurt Spielberg,et al.  Algorithms for the Simple Plant-Location Problem with Some Side Conditions , 1969, Oper. Res..

[127]  Zvi Drezner,et al.  An Efficient Genetic Algorithm for the p-Median Problem , 2003, Ann. Oper. Res..

[128]  D. H. Marks,et al.  An Analysis of Private and Public Sector Location Models , 1970 .

[129]  A. J. Goldman Optimal Locations for Centers in a Network , 1969 .

[130]  Alan M. Frieze,et al.  Probabilistic Analysis of a Relaxation for the k-Median Problem , 1986, Math. Oper. Res..

[131]  Polly Bart,et al.  Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph , 1968, Oper. Res..

[132]  Timothy J. Lowe,et al.  Row-Column Aggregation for Rectilinear Distance p-Median Problems , 1996, Transp. Sci..

[133]  Luiz Antonio Nogueira Lorena,et al.  A column generation approach to capacitated p-median problems , 2004, Comput. Oper. Res..

[134]  J. Current,et al.  An efficient tabu search procedure for the p-Median Problem , 1997 .

[135]  L. Cooper Location-Allocation Problems , 1963 .

[136]  L. A. Lorena,et al.  Stabilizing column generation using Lagrangean/surrogate relaxation: an application to p-median location problems , 2003 .

[137]  Neal E. Young,et al.  Greedy Approximation Algorithms for K-Medians by Randomized Rounding , 1999 .

[138]  István Borgulya A hybrid evolutionary algorithm for the p-median problem , 2005, GECCO '05.

[139]  Gerard Rushton,et al.  Strategies for Solving Large Location-Allocation Problems by Heuristic Methods , 1992 .

[140]  Kamesh Munagala,et al.  Local Search Heuristics for k-Median and Facility Location Problems , 2004, SIAM J. Comput..

[141]  Dominique Peeters,et al.  The Effect of Spatial Structure on p-Median Results , 1995, Transp. Sci..

[142]  Luiz Antonio Nogueira Lorena,et al.  Constructive Genetic Algorithm for Clustering Problems , 2001, Evolutionary Computation.

[143]  Evangelos Markakis,et al.  A Greedy Facility Location Algorithm Analyzed Using Dual Fitting , 2001, RANDOM-APPROX.

[144]  Manfred Horn Analysis and Computational Schemes for p-Median Heuristics , 1996 .

[145]  M. Brandeau,et al.  An overview of representative problems in location research , 1989 .

[146]  S. Hakimi Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems , 1965 .

[147]  Timothy J. Lowe,et al.  Location on Networks: A Survey. Part I: The p-Center and p-Median Problems , 1983 .

[148]  Roger L. Wainwright,et al.  A Study of Fixed-Length Subset Recombination , 1996, FOGA.

[149]  M. L. Fisher,et al.  Probabilistic Analysis of the Planar k-Median Problem , 1980, Math. Oper. Res..

[150]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[151]  Erhan Erkut,et al.  Analysis of aggregation errors for the p-median problem , 1999, Comput. Oper. Res..

[152]  Reuven Chen Solution of minisum and minimax location–allocation problems with Euclidean distances , 1983 .

[153]  T. V. Levanova,et al.  Algorithms of Ant System and Simulated Annealing for the p-median Problem , 2004 .

[154]  HansenPierre,et al.  Cooperative Parallel Variable Neighborhood Search for the p-Median , 2004 .

[155]  M. John Hodgson,et al.  Data Surrogation Error in p-Median Models , 2002, Ann. Oper. Res..

[156]  J. Davenport Editor , 1960 .

[157]  P. S. Davis,et al.  A branch‐bound algorithm for the capacitated facilities location problem , 1969 .

[158]  A. Neebe Branch and Bound Algorithm for the p-Median Transportation Problem , 1978 .

[159]  Paul H. Calamai,et al.  The demand partitioning method for reducing aggregation errors in p-median problems , 1999, Comput. Oper. Res..

[160]  Mauricio G. C. Resende,et al.  A Hybrid Heuristic for the p-Median Problem , 2004, J. Heuristics.