Geometric Speed Limit of Accessible Many-Body State Preparation

We analyze state preparation within a restricted space of local control parameters between adiabatically connected states of control Hamiltonians. We formulate a conjecture that the time integral of energy fluctuations over the protocol duration is bounded from below by the geodesic length set by the quantum geometric tensor. The conjecture implies a geometric lower bound for the quantum speed limit (QSL). We prove the conjecture for arbitrary, sufficiently slow protocols using adiabatic perturbation theory and show that the bound is saturated by geodesic protocols, which keep the energy variance constant along the trajectory. Our conjecture implies that any optimal unit-fidelity protocol, even those that drive the system far from equilibrium, are fundamentally constrained by the quantum geometry of adiabatic evolution. When the control space includes all possible couplings, spanning the full Hilbert space, we recover the well-known Mandelstam-Tamm bound. However, using only accessible local controls to anneal in complex models such as glasses or to target individual excited states in quantum chaotic systems, the geometric bound for the quantum speed limit can be exponentially large in the system size due to a diverging geodesic length. We validate our conjecture both analytically by constructing counter-diabatic and fast-forward protocols for a three-level system, and numerically in nonintegrable spin chains and a nonlocal SYK model.

[1]  A. Polkovnikov,et al.  Optimal nonlinear passage through a quantum critical point. , 2008, Physical review letters.

[2]  Enrique Solano,et al.  Measurement-based adaptation protocol with quantum reinforcement learning , 2018, Quantum Reports.

[3]  C. Jarzynski,et al.  Shortcuts to adiabaticity using flow fields , 2017, 1707.01490.

[4]  J. G. Muga,et al.  Shortcuts to Adiabaticity , 2012, 1212.6343.

[5]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[6]  S. Glaser,et al.  Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy , 1998, Science.

[7]  T. Jorg,et al.  Energy gaps in quantum first-order mean-field–like transitions: The problems that quantum annealing cannot solve , 2009, 0912.4865.

[8]  Tatsuhiko Koike,et al.  Time-optimal quantum evolution. , 2006, Physical review letters.

[9]  Sophie Shermer Training Schrödinger’s cat: quantum optimal control , 2015 .

[10]  A. Campo,et al.  Shortcuts to adiabaticity by counterdiabatic driving. , 2013, Physical review letters.

[11]  Marin Bukov,et al.  Reinforcement learning for autonomous preparation of Floquet-engineered states: Inverting the quantum Kapitza oscillator , 2018, Physical Review B.

[12]  Ennio Arimondo,et al.  Three-level superadiabatic quantum driving , 2014 .

[13]  Dong Eui Chang,et al.  Time-optimal control of a 3-level quantum system and its generalization to an n-level system , 2007, 2007 American Control Conference.

[14]  Tommaso Calarco,et al.  Chopped random-basis quantum optimization , 2011, 1103.0855.

[15]  P. Manju,et al.  Fast machine-learning online optimization of ultra-cold-atom experiments , 2015, Scientific Reports.

[16]  C. Jarzynski,et al.  Fast forward to the classical adiabatic invariant. , 2016, Physical review. E.

[17]  Stuart A Rice,et al.  Assisted adiabatic passage revisited. , 2005, The journal of physical chemistry. B.

[18]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[19]  S. Sondhi,et al.  Fast Preparation of Critical Ground States Using Superluminal Fronts. , 2017, Physical review letters.

[20]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[21]  S. Masuda,et al.  Fast-forward of adiabatic dynamics in quantum mechanics , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[23]  N. Margolus,et al.  The maximum speed of dynamical evolution , 1997, quant-ph/9710043.

[24]  Tzyh Jong Tarn,et al.  Fidelity-Based Probabilistic Q-Learning for Control of Quantum Systems , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[25]  David J. Schwab,et al.  A high-bias, low-variance introduction to Machine Learning for physicists , 2018, Physics reports.

[26]  A. Polkovnikov,et al.  Classifying and measuring geometry of a quantum ground state manifold , 2013, 1305.0568.

[27]  C. Jarzynski,et al.  Classical and Quantum Shortcuts to Adiabaticity for Scale-Invariant Driving , 2014, 1401.1184.

[28]  I. Bloch,et al.  Optimal control of complex atomic quantum systems , 2015, Scientific Reports.

[29]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[30]  M B Plenio,et al.  Quantum speed limits in open system dynamics. , 2012, Physical review letters.

[31]  Gerardo Adesso,et al.  Generalized Geometric Quantum Speed Limits , 2015, 1507.05848.

[32]  Aharonov,et al.  Geometry of quantum evolution. , 1990, Physical review letters.

[33]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[34]  M. Rigol,et al.  From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics , 2015, 1509.06411.

[35]  A. Retzker,et al.  Realization of a Quantum Integer-Spin Chain with Controllable Interactions , 2014, 1410.0937.

[36]  Hartmut Neven,et al.  Universal quantum control through deep reinforcement learning , 2019 .

[37]  José Miguel Hernández-Lobato,et al.  Taking gradients through experiments: LSTMs and memory proximal policy optimization for black-box quantum control , 2018, ISC Workshops.

[38]  Andreas Hartmann,et al.  Rapid counter-diabatic sweeps in lattice gauge adiabatic quantum computing , 2018, New Journal of Physics.

[39]  C. Monroe,et al.  Onset of a quantum phase transition with a trapped ion quantum simulator. , 2011, Nature communications.

[40]  S. Rosenberg,et al.  Geodesic Paths for Quantum Many-Body Systems , 2016, 1606.05890.

[41]  D. Stefanatos,et al.  Maximizing entanglement in bosonic Josephson junctions using shortcuts to adiabaticity and optimal control , 2018, 1802.07097.

[42]  Max Donath,et al.  American Control Conference , 1993 .

[43]  Vitanov,et al.  Landau-Zener model: Effects of finite coupling duration. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[44]  I. Tamm,et al.  The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics , 1991 .

[45]  Stefano Carretta,et al.  Superadiabatic driving of a three-level quantum system , 2017 .

[46]  A. Baksic,et al.  Supplementary information for “ Speeding up adiabatic quantum state transfer by using dressed states ” , 2016 .

[47]  Florian Marquardt,et al.  Reinforcement Learning with Neural Networks for Quantum Feedback , 2018, Physical Review X.

[48]  S Montangero,et al.  Information theoretical analysis of quantum optimal control. , 2014, Physical review letters.

[49]  H. Neven,et al.  Digitized adiabatic quantum computing with a superconducting circuit. , 2015, Nature.

[50]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[51]  W. Marsden I and J , 2012 .

[52]  A. Polkovnikov,et al.  Minimizing irreversible losses in quantum systems by local counterdiabatic driving , 2016, Proceedings of the National Academy of Sciences.

[53]  A. Sandvik,et al.  Microscopic theory of non-adiabatic response in real and imaginary time , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[54]  Sebastian Deffner,et al.  Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control , 2017, 1705.08023.

[55]  Timothy H. Hsieh,et al.  Efficient unitary preparation of non-trivial quantum states , 2018 .

[56]  M. Yung,et al.  Neural-network-designed pulse sequences for robust control of singlet-Triplet qubits , 2017, 1708.00238.

[57]  Stuart A. Rice,et al.  Adiabatic Population Transfer with Control Fields , 2003 .

[58]  Kavan Modi,et al.  Enhancing the Charging Power of Quantum Batteries. , 2016, Physical review letters.

[59]  M. Bukov,et al.  QuSpin: a Python Package for Dynamics and Exact Diagonalisation of Quantum Many Body Systems part I: spin chains , 2016, 1610.03042.

[60]  Riccardo Mannella,et al.  High-fidelity quantum driving , 2011, Nature Physics.

[61]  Pankaj Mehta,et al.  Reinforcement Learning in Different Phases of Quantum Control , 2017, Physical Review X.

[62]  Xi Chen,et al.  Shortcut to adiabatic population transfer in quantum three-level systems: Effective two-level problems and feasible counterdiabatic driving , 2016, 1611.04375.

[63]  Marin Bukov,et al.  Broken symmetry in a two-qubit quantum control landscape , 2017, 1711.09109.

[64]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[65]  G. C. Hegerfeldt,et al.  Driving at the quantum speed limit: optimal control of a two-level system. , 2013, Physical review letters.

[66]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[67]  Michael J. Watts,et al.  IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS Publication Information , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[68]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[69]  Pankaj Mehta,et al.  Glassy Phase of Optimal Quantum Control. , 2018, Physical review letters.

[70]  Lucy Rosenbloom arXiv , 2019, The Charleston Advisor.

[71]  G. N. Fleming A unitarity bound on the evolution of nonstationary states , 1973 .

[72]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[73]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[74]  J. Sherson,et al.  Approaching the Quantum Speed Limit with Global-Local Optimization , 2018, 1802.07521.

[75]  J. G. Muga,et al.  Engineering of fast population transfer in three-level systems , 2012 .

[76]  M. M. Taddei,et al.  Quantum Speed Limit for Physical Processes , 2013 .

[77]  Thermodynamic cost for classical counterdiabatic driving. , 2017, Physical review. E.

[78]  Kamal Bhattacharyya,et al.  Quantum decay and the Mandelstam-Tamm-energy inequality , 1983 .

[79]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[80]  Kavan Modi,et al.  Tightening Quantum Speed Limits for Almost All States. , 2017, Physical review letters.

[81]  K. Funo,et al.  Universal Work Fluctuations During Shortcuts to Adiabaticity by Counterdiabatic Driving. , 2016, Physical review letters.

[82]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[83]  T. Toffoli,et al.  Fundamental limit on the rate of quantum dynamics: the unified bound is tight. , 2009, Physical review letters.

[84]  Ian R. Petersen,et al.  Sampling-based learning control of inhomogeneous quantum ensembles , 2013, 1308.1454.

[85]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[86]  Xin Wang,et al.  Automatic spin-chain learning to explore the quantum speed limit , 2018, Physical Review A.

[87]  Stuart A Rice,et al.  On the consistency, extremal, and global properties of counterdiabatic fields. , 2008, The Journal of chemical physics.

[88]  Dominique Sugny,et al.  Optimal control of a three-level quantum system by laser fields plus von Neumann measurements , 2008 .

[89]  M. Berry,et al.  Transitionless quantum driving , 2009 .

[90]  C. Jarzynski Generating shortcuts to adiabaticity in quantum and classical dynamics , 2013, 1305.4967.

[91]  C. Jarzynski Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .

[92]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[93]  Jozef B Uffink The rate of evolution of a quantum state , 1993 .

[94]  Pieter Kok,et al.  Geometric derivation of the quantum speed limit , 2010, 1003.4870.

[95]  Dries Sels,et al.  Geometry and non-adiabatic response in quantum and classical systems , 2016, 1602.01062.