Damping of mesh-induced errors in Free-Lagrange simulations of Richtmyer-Meshkov instability

Abstract. Mesh-induced errors at material interfaces are identified as a source of unphysical behaviour in Lagrangian numerical simulations of Richtmyer-Meshkov instability. The mesh geometry introduces interface perturbations with wavelengths of the same order as the mesh resolution. When a shock propagates through the interface, these perturbations can grow, severely contaminating the predicted interface development. Here an algorithm is presented which damps small-scale interface perturbations. A body force is applied at the interface which depends upon the disturbance amplitude and growth rate, and which resembles surface tension. Using this technique, qualitative improvements are obtained in Free-Lagrange simulations of single-mode Richtmyer-Meshkov instability. Growth rate behaviour and the evolution of the instability are seen to agree well with previously published results.