Uniform Inference for Characteristic Effects of Large Continuous-Time Linear Models

We consider continuous-time models with a large panel of moment conditions, where the structural parameter depends on a set of characteristics, whose effects are of interest. The leading example is the linear factor model in financial economics where factor betas depend on observed characteristics such as firm specific instruments and macroeconomic variables, and their effects pick up long-run time-varying beta fluctuations. We specify the factor betas as the sum of characteristic effects and an orthogonal idiosyncratic parameter that captures high-frequency movements. It is often the case that researchers do not know whether or not the latter exists, or its strengths, and thus the inference about the characteristic effects should be valid uniformly over a broad class of data generating processes for idiosyncratic parameters. We construct our estimation and inference in a two-step continuous-time GMM framework. It is found that the limiting distribution of the estimated characteristic effects has a discontinuity when the variance of the idiosyncratic parameter is near the boundary (zero), which makes the usual "plug-in" method using the estimated asymptotic variance only valid pointwise and may produce either over- or under- coveraging probabilities. We show that the uniformity can be achieved by cross-sectional bootstrap. Our procedure allows both known and estimated factors, and also features a bias correction for the effect of estimating unknown factors.

[1]  M. Yuan,et al.  Adaptive covariance matrix estimation through block thresholding , 2012, 1211.0459.

[2]  Jianqing Fan,et al.  PROJECTED PRINCIPAL COMPONENT ANALYSIS IN FACTOR MODELS. , 2014, Annals of statistics.

[3]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[4]  Jean Jacod,et al.  Quarticity and other functionals of volatility: Efficient estimation , 2012, 1207.3757.

[5]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[6]  N. Shephard,et al.  Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics , 2004 .

[7]  John H. Cochrane,et al.  A Cross-Sectional Test of an Investment-Based Asset Pricing Model , 1996, Journal of Political Economy.

[8]  F. Dias,et al.  Determining the number of factors in approximate factor models with global and group-specific factors , 2008 .

[9]  D. Andrews,et al.  The Block-Block Bootstrap: Improved Asymptotic Refinements , 2002 .

[10]  Sergio Firpo,et al.  EFFICIENT SEMIPARAMETRIC ESTIMATION OF , 2007 .

[11]  D. Andrews,et al.  Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure , 2008 .

[12]  Gregory Connor,et al.  Performance Measurement with the Arbitrage Pricing Theory: A New Framework for Analysis , 1985 .

[13]  George Tauchen,et al.  Jump factor models in large cross‐sections , 2019, Quantitative Economics.

[14]  J. Lewellen The Cross Section of Expected Stock Returns , 2014 .

[15]  W. Newey,et al.  Instrumental variable estimation of nonparametric models , 2003 .

[16]  J. Bai,et al.  Inferential Theory for Factor Models of Large Dimensions , 2003 .

[17]  Gregory Connor,et al.  Semiparametric Estimation of a Characteristic-Based Factor Model of Stock Returns , 2000 .

[18]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[19]  D. Xiu,et al.  Generalized Method of Integrated Moments for High‐Frequency Data , 2016 .

[20]  Yuan Liao,et al.  Inferences in panel data with interactive effects using large covariance matrices , 2017 .

[21]  Jay Shanken,et al.  Intertemporal asset pricing: An Empirical Investigation , 1990 .

[22]  Jean Jacod,et al.  Discretization of Processes , 2011 .

[23]  W. Newey,et al.  Double machine learning for treatment and causal parameters , 2016 .

[24]  T. Bollerslev,et al.  Roughing up Beta: Continuous versus Discontinuous Betas and the Cross Section of Expected Stock Returns , 2016 .

[25]  Dacheng Xiu,et al.  Using Principal Component Analysis to Estimate a High Dimensional Factor Model with High-Frequency Data , 2016 .

[26]  Neil Shephard,et al.  Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .

[27]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[28]  P. Hansen,et al.  Forecasting Volatility Using High Frequency Data , 2010 .

[29]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[30]  W. Newey,et al.  The asymptotic variance of semiparametric estimators , 1994 .

[31]  C. Patel High Idiosyncratic Volatility and Low Returns: International and Further U.S. Evidence , 2009 .

[32]  Anna Mikusheva Uniform Inference in Autoregressive Models , 2007 .

[33]  D. Andrews Estimation When a Parameter is on a Boundary , 1999 .

[34]  R. Hodrick,et al.  High Idiosyncratic Volatility and Low Returns: International and Further U.S. Evidence , 2008 .

[35]  Philipp Ketz Testing Overidentifying Restrictions When the True Parameter Vector Is near or at the Boundary of the Parameter Space , 2015 .

[36]  Xiaohong Chen,et al.  Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Generalized Residuals , 2009 .

[37]  Philipp Ketz Subvector inference when the true parameter vector may be near or at the boundary , 2018, Journal of Econometrics.

[38]  Zhipeng Liao,et al.  Sieve Semiparametric Two-Step GMM Under Weak Dependence , 2015 .

[39]  M. Okamoto Distinctness of the Eigenvalues of a Quadratic form in a Multivariate Sample , 1973 .

[40]  M. Rothschild,et al.  Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets , 1983 .

[41]  D. Andrews Inconsistency of the Bootstrap when a Parameter is on the Boundary of the Parameter Space , 2000 .

[42]  Inference theory for volatility functional dependencies , 2016 .

[43]  Edoardo Cortellesi The idiosyncratic volatility puzzle , 2019 .

[44]  Olivier Scaillet,et al.  Time-Varying Risk Premium in Large Cross-Sectional Equity Data Sets , 2016 .

[45]  M. Lettau,et al.  Resurrecting the (C)Capm: A Cross-Sectional Test When Risk Premia Wre Time-Varying , 1999 .

[46]  P. Protter Stochastic integration and differential equations , 1990 .

[47]  J. Florens,et al.  Nonparametric Instrumental Regression , 2010 .

[48]  D. Andrews,et al.  Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection , 2007 .

[49]  H. Iemoto Modelling the persistence of conditional variances , 1986 .

[50]  Yingying Li,et al.  On the Estimation of Integrated Covariance Matrices of High Dimensional Diffusion Processes , 2010, 1005.1862.

[51]  P. Hall,et al.  Nonparametric methods for inference in the presence of instrumental variables , 2003, math/0603130.

[52]  Enrique Sentana,et al.  Volatiltiy and Links between National Stock Markets , 1990 .

[53]  Xiaohong Chen,et al.  Estimation of Semiparametric Models When the Criterion Function is Not Smooth , 2002 .

[54]  S. Lahiri Theoretical comparisons of block bootstrap methods , 1999 .

[55]  R. Pedersen Inference and Testing on the Boundary in Extended Constant Conditional Correlation GARCH Models , 2015 .

[56]  Eric Ghysels,et al.  On Stable Factor Structures in the Pricing of Risk: Do Time-Varying Betas Help or Hurt? , 1998 .

[57]  Markus Pelger Large-Dimensional Factor Modeling Based on High-Frequency Observations , 2018 .

[58]  Gregory Connor,et al.  A Test for the Number of Factors in an Approximate Factor Model , 1993 .

[59]  Jianqing Fan,et al.  Incorporating Global Industrial Classification Standard into Portfolio Allocation: A Simple Factor-Based Large Covariance Matrix Estimator with High Frequency Data , 2015 .

[60]  Jianqing Fan,et al.  Large covariance estimation by thresholding principal orthogonal complements , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[61]  B. Kelly,et al.  Instrumented Principal Component Analysis , 2017 .

[62]  Ilze Kalnina,et al.  Nonparametric Tests of Time Variation in Betas ⇤ , 2012 .

[63]  Cecilia Mancini,et al.  Disentangling the jumps of the diffusion in a geometric jumping Brownian motion , 2001 .

[64]  R. Jagannathan,et al.  The Conditional CAPM and the Cross-Section of Expected Returns , 1996 .

[65]  R. H. Smith,et al.  Asset Pricing Models and Financial Market Anomalies , 2006 .

[66]  Kent D. Daniel,et al.  NBER WORKING PAPER SERIES EVIDENCE ON THE CHARACTERISTICS OF CROSS SECTIONAL VARIATION IN STOCK RETURNS , 1996 .

[67]  Jean Jacod,et al.  Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9 , 2007 .

[68]  P. Mykland,et al.  ANOVA for diffusions and Itô processes , 2006, math/0611274.

[69]  George Tauchen,et al.  Adaptive estimation of continuous-time regression models using high-frequency data , 2017 .

[70]  Jianqing Fan,et al.  Power Enhancement in High Dimensional Cross-Sectional Tests , 2013, Econometrica : journal of the Econometric Society.

[71]  O. Linton,et al.  EFFICIENT SEMIPARAMETRIC ESTIMATION OF THE FAMA-FRENCH MODEL AND EXTENSIONS , 2012 .

[72]  The Common Factor in Idiosyncratic Volatility: Quantitative Asset Pricing Implications , 2014 .