Millisecond-Scale Motor Encoding in a Cortical Vocal Area

Analyzing brain activity in songbirds suggests that the nervous system controls behavior by precisely modulating the timing pattern of electrical events.

[1]  Liam Paninski,et al.  Estimation of Entropy and Mutual Information , 2003, Neural Computation.

[2]  M. Diamond,et al.  Deciphering the Spike Train of a Sensory Neuron: Counts and Temporal Patterns in the Rat Whisker Pathway , 2006, The Journal of Neuroscience.

[3]  Zhiyi Chi,et al.  Temporal Precision and Temporal Drift in Brain and Behavior of Zebra Finch Song , 2001, Neuron.

[4]  R. Reid,et al.  Temporal Coding of Visual Information in the Thalamus , 2000, The Journal of Neuroscience.

[5]  V. Lawhern,et al.  Spike Rate and Spike Timing Contributions to Coding Taste Quality Information in Rat Periphery , 2011, Front. Integr. Neurosci..

[6]  Bijan Pesaran,et al.  The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird , 1998, Nature.

[7]  M. Dalva,et al.  Long-range inhibition within the zebra finch song nucleus RA can coordinate the firing of multiple projection neurons. , 1999, Journal of neurophysiology.

[8]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[9]  William Bialek,et al.  Entropy and information in neural spike trains: progress on the sampling problem. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  L. Paninski,et al.  Spatiotemporal tuning of motor cortical neurons for hand position and velocity. , 2004, Journal of neurophysiology.

[11]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[12]  R. Burke Motor Units: Anatomy, Physiology, and Functional Organization , 1981 .

[13]  Stefano Panzeri,et al.  Correcting for the sampling bias problem in spike train information measures. , 2007, Journal of neurophysiology.

[14]  Philippe Tarroux,et al.  Contribution of spike timing to the information transmitted by HVC neurons , 2006, The European journal of neuroscience.

[15]  A. Doupe,et al.  Contributions of an avian basal ganglia–forebrain circuit to real-time modulation of song , 2005, Nature.

[16]  Ilya Nemenman,et al.  Coincidences and Estimation of Entropies of Random Variables with Large Cardinalities , 2011, Entropy.

[17]  William Bialek,et al.  Entropy and Inference, Revisited , 2001, NIPS.

[18]  M. Fee,et al.  Changes in the neural control of a complex motor sequence during learning. , 2011, Journal of neurophysiology.

[19]  Eric Shea-Brown,et al.  Information theoretic approaches to understanding circuit function , 2012, Current Opinion in Neurobiology.

[20]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[21]  M. Brainard,et al.  Performance variability enables adaptive plasticity of ‘crystallized’ adult birdsong , 2007, Nature.

[22]  PaninskiLiam Estimation of entropy and mutual information , 2003 .

[23]  Rajiv Narayan,et al.  Distinct time scales in cortical discrimination of natural sounds in songbirds. , 2006, Journal of neurophysiology.

[24]  Samuel J Sober,et al.  Vocal Generalization Depends on Gesture Identity and Sequence , 2014, The Journal of Neuroscience.

[25]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[26]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[27]  I. Nemenman Inference of entropies of discrete random variables with unknown cardinalities , 2002, physics/0207009.

[28]  Robert C. Liu,et al.  Variability and information in a neural code of the cat lateral geniculate nucleus. , 2001, Journal of neurophysiology.

[29]  A. Doupe,et al.  Interruption of a basal ganglia–forebrain circuit prevents plasticity of learned vocalizations , 2000, Nature.

[30]  Jonathan D Victor,et al.  Spike train metrics , 2005, Current Opinion in Neurobiology.

[31]  A. C. Yu,et al.  Temporal Hierarchical Control of Singing in Birds , 1996, Science.

[32]  Richard Hans Robert Hahnloser,et al.  Neural Mechanisms of Vocal Sequence Generation in the Songbird , 2004, Annals of the New York Academy of Sciences.

[33]  S. Sober,et al.  Vocal learning is constrained by the statistics of sensorimotor experience , 2012, Proceedings of the National Academy of Sciences.

[34]  L. Rome,et al.  Superfast Vocal Muscles Control Song Production in Songbirds , 2008, PloS one.

[35]  J. Victor,et al.  Nature and precision of temporal coding in visual cortex: a metric-space analysis. , 1996, Journal of neurophysiology.

[36]  Hannes P. Saal,et al.  Millisecond Precision Spike Timing Shapes Tactile Perception , 2012, The Journal of Neuroscience.

[37]  Michael S. Brainard,et al.  Online Contributions of Auditory Feedback to Neural Activity in Avian Song Control Circuitry , 2008, The Journal of Neuroscience.

[38]  M. Fee Peripheral Mechanisms , 2022 .

[39]  J. Sakata,et al.  Real-Time Contributions of Auditory Feedback to Avian Vocal Motor Control , 2006, The Journal of Neuroscience.

[40]  L Griffin,et al.  Motor unit double discharges: statistical anomaly or functional entity? , 1999, Canadian journal of applied physiology = Revue canadienne de physiologie appliquee.

[41]  Jonathan D. Victor,et al.  Metric-space analysis of spike trains: theory, algorithms and application , 1998, q-bio/0309031.

[42]  I. V. Orekhova,et al.  The neuromuscular transform: the dynamic, nonlinear link between motor neuron firing patterns and muscle contraction in rhythmic behaviors. , 2000, Journal of neurophysiology.

[43]  Richard Hans Robert Hahnloser,et al.  Spike-Time-Dependent Plasticity and Heterosynaptic Competition Organize Networks to Produce Long Scale-Free Sequences of Neural Activity , 2010, Neuron.

[44]  Michael S Brainard,et al.  Linked Control of Syllable Sequence and Phonology in Birdsong , 2010, The Journal of Neuroscience.

[45]  A. Leonardo,et al.  Ensemble Coding of Vocal Control in Birdsong , 2005, The Journal of Neuroscience.

[46]  Michael J. Berry,et al.  Synergy from Silence in a Combinatorial Neural Code , 2006, The Journal of Neuroscience.

[47]  Bernhard Ronacher,et al.  Discrimination of behaviorally relevant signals by auditory receptor neurons , 2001, Neurocomputing.

[48]  Aaron S. Andalman,et al.  Vocal Experimentation in the Juvenile Songbird Requires a Basal Ganglia Circuit , 2005, PLoS biology.

[49]  E.C.L. Vu,et al.  Identification of a forebrain motor programming network for the learned song of zebra finches , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  William Bialek,et al.  Neural Coding of Natural Stimuli: Information at Sub-Millisecond Resolution , 2007, BMC Neuroscience.

[51]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[52]  J. L. Leeuwen,et al.  Bird song: Superfast muscles control dove's trill , 2004, Nature.

[53]  Alexander Borst,et al.  Real-Time Encoding of Motion: Answerable Questions and Questionable Answers from the Fly’s Visual System , 2000, physics/0004060.

[54]  Maoz Shamir,et al.  Cortical Discrimination of Complex Natural Stimuli: Can Single Neurons Match Behavior? , 2007, The Journal of Neuroscience.

[55]  A. Doupe,et al.  Temporal sequences of spikes during practice code for time in a complex motor sequence , 2014, 1404.0655.

[56]  Vladimir Brezina,et al.  Variability of Motor Neuron Spike Timing Maintains and Shapes Contractions of the Accessory Radula Closer Muscle of Aplysia , 2006, The Journal of Neuroscience.

[57]  Michael S. Brainard,et al.  Central Contributions to Acoustic Variation in Birdsong , 2008, The Journal of Neuroscience.

[58]  Daniel Chicharro,et al.  What can spike train distances tell us about the neural code? , 2011, Journal of Neuroscience Methods.

[59]  Robin C. Ashmore,et al.  Brainstem and Forebrain Contributions to the Generation of Learned Motor Behaviors for Song , 2005, The Journal of Neuroscience.

[60]  Anne Hsu,et al.  Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds , 2005, Nature Neuroscience.