Quantum random bit generation using energy fluctuations in stimulated Raman scattering.

Random number sequences are a critical resource in modern information processing systems, with applications in cryptography, numerical simulation, and data sampling. We introduce a quantum random number generator based on the measurement of pulse energy quantum fluctuations in Stokes light generated by spontaneously-initiated stimulated Raman scattering. Bright Stokes pulse energy fluctuations up to five times the mean energy are measured with fast photodiodes and converted to unbiased random binary strings. Since the pulse energy is a continuous variable, multiple bits can be extracted from a single measurement. Our approach can be generalized to a wide range of Raman active materials; here we demonstrate a prototype using the optical phonon line in bulk diamond.

[1]  N. Basov,et al.  Stimulated Raman scattering , 1982 .

[2]  H. Lo,et al.  High-speed quantum random number generation by measuring phase noise of a single-mode laser. , 2010, Optics letters.

[3]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[4]  H. Schmidt Quantum‐Mechanical Random‐Number Generator , 1970 .

[5]  Hong Guo,et al.  Truly random number generation based on measurement of phase noise of a laser. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  R. Dong,et al.  A generator for unique quantum random numbers based on vacuum states , 2010 .

[7]  Raymer,et al.  Observation of extreme sensitivity to induced molecular coherence in stimulated Raman scattering. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[8]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[9]  Walmsley,et al.  Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering. , 1985, Physical review. A, General physics.

[10]  Michael G. Raymer,et al.  Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation , 1981 .

[11]  F. Laurell,et al.  Sum‐frequency generation in segmented KTP waveguides , 1992 .

[12]  C. Luchini,et al.  [High speed]. , 1969, Revista De La Escuela De Odontologia, Universidad Nacional De Tucuman, Facultad De Medicina.

[13]  Kuo,et al.  Spatial interference of macroscopic light fields from independent Raman sources. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[14]  Yvo Desmedt,et al.  Advances in Cryptology — CRYPTO ’94 , 2001, Lecture Notes in Computer Science.

[15]  M. E. Cox Handbook of Optics , 1980 .

[16]  Adam Paszkiewicz,et al.  On quantum information , 2012, ArXiv.

[17]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[18]  M. Lewenstein,et al.  Statistics of stimulated stokes pulse energies in the steady-state regime , 1982 .

[19]  Enrique San Millán,et al.  Accelerating secure circuit design with hardware implementation of Diehard Battery of tests of randomness , 2011, 2011 IEEE 17th International On-Line Testing Symposium.

[20]  Brian Hayes,et al.  Randomness as a Resource , 2001, American Scientist.

[21]  Hong Guo,et al.  Bias-free true random-number generator. , 2009, Optics letters.

[22]  A. Laubereau,et al.  High intensity Raman interactions , 1979 .

[23]  Alireza Marandi,et al.  All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators. , 2012, Optics express.

[24]  F. Benabid,et al.  Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber , 2002, Science.

[25]  Raymer,et al.  Near quantum-limited phase memory in a Raman amplifier. , 1991, Physical review letters.

[26]  I. Walmsley,et al.  Comparing phonon dephasing lifetimes in diamond using Transient Coherent Ultrafast Phonon Spectroscopy , 2010 .

[27]  M Jofre,et al.  True random numbers from amplified quantum vacuum. , 2011, Optics express.

[28]  Walmsley,et al.  Experimental study of the macroscopic quantum fluctuations of partially coherent stimulated Raman scattering. , 1986, Physical review. A, General physics.

[29]  I. Walmsley,et al.  Observation of macroscopic quantum fluctuations in stimulated Raman scattering (A) , 1983 .

[30]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[31]  François Ladouceur,et al.  Diamond waveguides fabricated by reactive ion etching. , 2008, Optics express.

[32]  I. Walmsley,et al.  Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond , 2011, Nature Photonics.

[33]  H. Zeng,et al.  Quantum random-number generator based on a photon-number-resolving detector , 2011 .

[34]  J. Mostowski,et al.  Transverse effects in stimulated Raman scattering , 1984 .

[35]  Xiongfeng Ma,et al.  Ultrafast quantum random number generation based on quantum phase fluctuations. , 2011, Optics express.

[36]  He Xu,et al.  Postprocessing for quantum random number generators: entropy evaluation and randomness extraction , 2012, ArXiv.

[37]  Hugo Krawczyk,et al.  LFSR-based Hashing and Authentication , 1994, CRYPTO.

[38]  I. Walmsley,et al.  Quantum random bit generation using stimulated Raman scattering. , 2011, Optics express.

[39]  W. Marsden I and J , 2012 .

[40]  M. Wahl,et al.  An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements , 2011 .

[41]  H. Weinfurter,et al.  High speed optical quantum random number generation. , 2010, Optics express.

[42]  T. Symul,et al.  Real time demonstration of high bitrate quantum random number generation with coherent laser light , 2011, 1107.4438.

[43]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[44]  L. Tian,et al.  Practical quantum random number generator based on measuring the shot noise of vacuum states , 2010 .

[45]  J. F. Dynes,et al.  A high speed , postprocessing free , quantum random number generator , 2008 .

[46]  M. Raymer,et al.  Pulse-energy statistics in stimulated Raman scattering. , 1982, Optics letters.

[47]  Xiang Zhang,et al.  Experimental Certification of Random Numbers via Quantum Contextuality , 2013, Scientific Reports.

[48]  I. Walmsley,et al.  Measuring phonon dephasing with ultrafast pulses using Raman spectral interference , 2008 .

[49]  David N. Payne,et al.  Optical fibres based on phosphosilicate glass , 1976 .